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David D. Cho 

BEHAVIOR, FLEXIBILITY, AND QUALITY IN SERVICE OPERATIONS 

MANAGEMENT 

 

This dissertation bridges two areas in service operations management: (1) capacity 

planning with the presence of flexible capacity and (2) behavioral and quality phenomena. 

In service processes, the quality of the work and the behavior of the workers are greatly 

influenced by the level of work assigned to each worker, which is determined by a firm’s 

capacity planning decisions and utilization of the flexibility. Therefore, we incorporate 

the behavioral and quality impacts into capacity planning with the presence of flexible 

capacity. In Chapter 2, we present nurse staffing models that incorporate patient 

outcomes, nurse burnout, length of stay, and costs when a hospital is setting patient-to-

nurse ratios. By incorporating patient and nurse outcomes, we show that lower patient-to-

nurse ratios can potentially provide financial benefits in addition to improving the quality 

of care that hospitals provide. In Chapter 3, we model speedup and slowdown of workers 

in a very general way to represent many possible joint effects of these behavioral 

phenomena. We use this model to study the impact of speedup and slowdown on a multi-

period workforce staffing problem with recourse. Our results show that the slowdown 

effect can be strong enough in most settings to cause the firm to aggressively utilize 

expensive on-call workers to avoid future system congestion. In Chapter 4, we compare 

traditional and open-access scheduling policies for outpatient medical practices in terms 

of the number of patients served and financial performance. In contrast to earlier works, 

we consider the optimal average number of patients served and find that while the 
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traditional policy may be more profitable by providing doctors more control over their 

schedule and ability to limit overtime, the open-access policy may lead doctors to serve a 

greater number of patients. Overall, this dissertation shows that the firm can enjoy the 

benefits of improved service and better financial performance by taking behavior, quality, 

and flexibility into consideration for its capacity planning decisions. 
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CHAPTER 1 

INTRODUCTION 

This dissertation bridges two areas in service operations management: (1) capacity 

planning with the presence of flexible capacity and (2) behavioral and quality phenomena. 

In service processes, the quality of the work and the behavior of the workers are greatly 

influenced by the level of work assigned to each worker, which is determined by a firm’s 

capacity planning decisions and its utilization of the flexibility. Consequently, the 

importance of behavioral and quality impacts and the role of flexibility in capacity 

planning need to be incorporated in the decision-making process. Recent behavioral 

research has shown that several assumptions made by traditional operations management 

decision models do not always hold. For example, in healthcare operations, failure to 

consider how the patient-to-nurse ratio impacts patient quality outcomes and nurse 

behavior ignores potential cost savings resulting from higher quality of care and 

improved nurse satisfaction. Moreover, while service staffing models commonly assume 

that the service rate is fixed, recent empirical studies have shown that servers employ a 

changing service rate (either deliberately or as an unintended consequence of system 

congestion) depending on the assigned workload. In particular, of the three essays in this 

dissertation, two study worker staffing decisions while taking into account the impacts of 

those decisions on quality of service and workforce behavior. The third essay examines 

the effects of flexibility in service systems by investigating a healthcare provider’s 

strategy on utilizing appointment slots to meet patient demand. 

Chapter 2, “Nurse Staffing Ratios: A Case for Higher Quality of Care,” considers 

the problem of setting appropriate nurse staffing ratios in a hospital, an issue that is both 
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complex and widely debated. While this staffing problem has received considerable 

attention in the operations management literature, traditional operations management 

models have failed to take advantage of extensive behavioral and quality results on 

patient and nurse outcomes. For example, empirical studies have shown that each 

additional patient assigned per nurse in a hospital is associated with a 7% increase in 

mortality rates and a 23% increase in nurse burnout (Aiken et al. 2002). In Chapter 2, we 

study the patient-to-nurse ratio decision using stochastic programming methods while 

incorporating the impacts of the decision on various outcomes such as patient length-of-

stay and nurse turnover. Our results show that lower patient-to-nurse ratios can be more 

cost-effective than higher ratios by allowing hospitals to provide better quality of care 

and decrease the costs incurred by adverse patient and nurse outcomes, overcoming the 

higher wage costs incurred by staffing more nurses. 

Chapter 3, “Behavior-Aware Workforce Staffing,” builds on the first essay and 

studies how to incorporate the behavioral issues of speedup and slowdown into workforce 

staffing decisions. Service staffing models commonly assume that the rate at which 

servers work on each customer is fixed. However, human behavior can be more complex. 

Several recent empirical studies show that workers may have a tendency to increase their 

service rate, called speedup, to account for an increase in workload. On the other hand, 

the service rate may also decrease, called slowdown, if the system is too congested. We 

first model speedup and slowdown separately in a very general way and use a convex 

combination of the two functions to represent many possible joint effects of these 

behavioral phenomena. We then incorporate this model and study the decision of worker 

staffing under the joint effects of speedup and slowdown using a stochastic dynamic 
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program in which the worker productivity depends on the workload, or ratio of customers 

to servers. Our results show that, when the joint effects of speedup and slowdown are 

taken into account, a dynamic recourse policy for which the optimal workload varies in 

the number of customer requests in the system is optimal in most settings. We also 

identify conditions under which the optimal workload is independent of the number of 

customer requests. Furthermore, using numerical studies, we propose that a one-step 

look-ahead policy is a viable alternative to the optimal policy. 

While the first two chapters consider capacity planning from the supply side, 

Chapter 4, “The Patient Patient: The Performance of Traditional versus Open-Access 

Scheduling Policies,” studies the demand side of healthcare providers by comparing the 

performance of two appointment scheduling policies with different levels of flexibility. 

Under a traditional scheduling policy, a patient schedules an appointment in advance and 

thus there is a possibility of patient no-shows. In response, doctors overbook patients to 

prevent idle time created by no-shows. Under an open-access scheduling policy, a patient 

is only allowed to schedule a same-day appointment, thereby eliminating patient no-

shows but creating more randomness in the daily number of scheduled appointments. In 

contrast to earlier works, our results show that while the traditional policy may be more 

profitable by providing doctors more control over their schedule and ability to limit 

overtime, the open-access policy may lead to doctors to serve a greater number of 

patients. Our results provide insights that can help policy makers to better incentivize the 

doctors to implement the open-access policy, which is socially optimal. 
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CHAPTER 2 

NURSE STAFFING RATIOS: A CASE FOR HIGHER QUALITY OF CARE 

Abstract 

We consider the problem of setting appropriate nurse staffing ratios in a hospital, an issue 

that is both complex and widely debated. Despite the considerable attention given to 

healthcare in operations research and operations management, there has been only limited 

effort to take advantage of the extensive results available from the medical, nursing, and 

healthcare services literature to make the research more patient- and nurse-oriented, both 

of which are critical concerns when deciding patient-to-nurse ratios. For example, 

empirical studies have shown that each additional patient assigned per nurse in a hospital 

is associated with a 7% increase in mortality rates and a 23% increase in nurse burnout. 

Failure to consider impacts such as these not only limits the relevance of many healthcare 

decision models, but also ignores potential cost savings resulting from providing higher 

quality of care and improved nurse satisfaction. Thus, we present nurse staffing models 

that incorporate patient outcomes, nurse burnout, length of stay, and costs when a 

hospital is setting patient-to-nurse ratios. We present results based on data collected from 

three hospitals. By incorporating patient and nurse outcomes, we show that lower patient-

to-nurse ratios can potentially provide financial benefits in addition to improving the 

quality of care that hospitals provide.  

  



www.manaraa.com

 

5 

 

2.1. Introduction 

Today’s healthcare industry faces a wide range of challenges. Healthcare costs and 

healthcare expenditures remain high (Martin et al. 2012), and problems such as 

emergency department overcrowding (U.S. General Accounting Office (GAO) 2009, 

Pitts et al. 2012), lack of access to care (Gulliford and Morgan 2003, Bodenheimer and 

Pham 2010), and a shortage of nurses in the United States and Europe persists (Juraschek 

et al. 2012, OECD/European Union 2014). In addition, many U.S. states have enacted, or 

are considering enacting, legislation mandating minimum patient-to-nurse ratios in 

hospitals (Aiken et al. 2010). For example, when California was initially considering 

legislation setting required patient-to-nurse ratios for typical medical/surgical inpatient 

wards, hospital management suggested ratios as high as 10:1, and nursing unions 

suggested as low as 3:1 (Spetz 2004). Lower patient-to-nurse ratios result in the need for 

more nurses working at a given time and thus higher staffing costs, but also are 

associated with higher quality of patient care, less nurse turnover, and shorter patient 

length of stay in the hospital, as shown in studies of hospitals in the United States and 

Europe (Aiken et al. 2002, Kane et al. 2007b, Aiken et al. 2012, Aiken et al. 2014). These 

tradeoffs between nurse capacity, quality of care, nurse satisfaction, and costs are 

complex and at the heart of the debate regarding optimal patient-to-nurse ratios. 

Therefore, in this chapter we address the following research questions: (1) How can these 

tradeoffs be taken into account when setting patient-to-nurse ratios? (2) Is there a 

business case for higher quality of patient care? 

Further motivating the importance of issues regarding appropriate capacity levels, 

the Institute of Medicine (2001) set forth six “aims for improvement” in healthcare 
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delivery, stating that the healthcare industry should strive to become safe, effective, 

patient-centered, timely, efficient, and equitable. The goals to be timely and efficient fit 

in well with traditional cost driven operations management research, and there are 

already significant contributions along these lines. However, as discussed above, 

healthcare capacity planning decisions also significantly affect other important patient- 

and nurse-oriented performance measures. Most operations management literature fails to 

take into account these considerations. For example, based on data collected from 168 

hospitals, Aiken et al. (2002) show that each additional patient assigned per nurse is 

associated with a 7% increase in the likelihood of dying within 30 days of admission and 

a 23% increase in nurse burnout. Kane et al. (2007b) provide estimates of the impact of 

nurse staffing levels on a variety of patient outcomes based on an overview of the 

literature. Phibbs et al. (2007) show that the size of inpatient hospital units can affect 

patient mortality rates as well. As will be discussed in more detail in the next section, 

there is a large body of this type of medical, nursing, and healthcare services literature 

that reports empirical results on the relationship between several types of operations 

management decision variables, such as nurse staffing and hospital volume, and a variety 

of patient and nurse outcomes. Failure to consider how patient-to-nurse ratios may impact 

patient outcomes and nurse turnover not only limits the relevance of healthcare 

operations research decision models, but also ignores potential cost savings resulting 

from higher quality of care and improved nurse satisfaction. Therefore, in this chapter we 

consider the question of under what circumstances providing higher nursing capacity 

levels with the associated higher wage costs can actually lead to lower total costs due to 

better patient care and less nurse turnover. 
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To address this question, we present nurse staffing models that incorporate the 

impact of patient-to-nurse ratios on patient outcomes and nurse satisfaction. We consider 

both stochastic and deterministic patient demand cases. The decisions addressed include 

patient-to-nurse ratios, usage of unit nurses, and usage of external agency nurses. The 

models incorporate empirical findings on the relationship between nurse staffing ratios 

and patient outcomes as well as nurse satisfaction. We report numerical results based on 

data collected from three participating hospitals. Our results show that lower patient-to-

nurse ratios can be more cost-effective than the higher ratios by allowing hospitals to 

provide better quality of care and decrease adverse patient and nurse outcomes. That is, 

minimizing cost and maximizing quality are not necessarily at odds with each other. Our 

goal is to present a methodology to aid hospitals when setting nurse staffing levels.  

The remainder of the chapter is organized as follows. Section 2.2 discusses two 

streams of literature relevant to this study: (i) operations research and operations 

management literature focused on hospital capacity planning and nurse staffing and (ii) 

medical, nursing, and healthcare services literature reporting empirical results on how 

various operations management decision impact patient outcomes, nurse outcomes, and 

hospital outcomes. Based on this literature, Section 2.3 presents nurse staffing models 

that incorporate the impact of patient-to-nurse ratios on patient outcomes and nurse 

turnover. Section 2.4 presents nurse staffing insights based on simplified models that treat 

patient demand as deterministic instead of stochastic. Section 2.5 presents sensitivity 

analysis on some of the key input parameters. Section 2.6 provides some concluding 

remarks and opportunities for future research.  
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2.2. Literature Review  

First we present a review of recent research in hospital capacity planning from the 

operations research and operations management literature, illustrating the lack of work 

with regards to incorporating patient outcomes and nurse satisfaction into the models. 

Then we review the large body of literature in the medical, nursing, and healthcare 

services fields that study the relationship between a variety of operations management-

related decision variables and patient outcomes, nurse outcomes, and hospital outcomes.  

2.2.1. Hospital Capacity Planning and Nurse Staffing Literature  

Healthcare operations research has been studied for many years, with hospital capacity 

planning being an important topic within this broad field (Green 2005). Hospital capacity 

planning involves a wide variety of decisions, including facility size and location (Daskin 

and Dean 2005), nurse staffing (Cheang et al. 2003, Burke et al. 2004), number of beds 

and patient flow (Thompson et al. 2009, Dobson et al. 2010, Bretthauer et al. 2011, 

Mandelbaum et al. 2012), major equipment acquisition (e.g., MRI), surgical scheduling 

(Olivares et al. 2008, Denton et al. 2010, May et al. 2011), screening and biopsy schedule 

decisions (Chhatwal et al. 2010, Rauner et al. 2010), and patient appointments (Green 

and Savin 2008, Gupta and Denton 2008, Lee and Zenios 2009, Dobson et al. 2011, 

Wang and Gupta 2011). In the remainder of this subsection, we will focus on the 

literature most relevant to this study, nurse staffing.   

Traditionally, the nurse staffing literature focuses on developing efficient work 

schedules that minimize wage costs. More recently, researchers have incorporated 

different types of resources and studied the interdependencies among different capacity 



www.manaraa.com

 

9 

 

decisions. White et al. (2011) examine the benefits of integrating capacity, patient flow, 

and scheduling in outpatient clinics. Gnanlet and Gilland (2009) and Dobson et al. (2009) 

address decisions regarding resource allocation and scheduling of labor in healthcare 

services.  California Bill AB 394, which mandates fixed patient-to-nurse staffing ratios 

for hospitals, inspired debate within the healthcare operations management community, 

and motivated numerous researchers and their studies. Wright et al. (2006) analyze the 

impact of mandatory patient-to-nurse ratios on nurse schedule costs, and find that nurse 

wage costs can be highly nonlinear with respect to changes in patient-to-nurse ratios. De 

Véricourt and Jennings (2011) model the nurse staffing decision as a closed M/M/s//n 

queueing system. They determine that it is more effective to deviate from threshold-

specific patient-to-nurse ratios, diverging from the recent trend of implementing 

mandatory ratios. Yankovic and Green (2011) develop a queueing model to represent 

interaction between the nurse and bed systems. They discuss problems in using rigid 

patient-to-nurse ratios across a broad range of hospital units. Green et al. (2013) present 

the optimal staffing levels incorporating the effect of absenteeism rate that is a function 

of the number of nurses scheduled. We also consider the issue of mandatory patient-to-

nurse ratios and present methods for establishing the optimal ratios for hospitals. Our 

essay differs from other work by taking patient outcomes as well as nurse outcomes into 

account when determining nurse staffing policies.  

Another branch of research that is related to this essay is the utilization of flexible 

and cross-trained workers. Campbell (1999) explores the benefits of cross-utilization by 

developing a model for allocating cross-trained workers at the beginning of a shift in a 

multidepartment service environment. Pinker and Shumsky (2000) suggest that benefits 
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gained in efficiency may be lost in quality. Jordan et al. (2004) and Hopp et al. (2004) 

investigate the performance and robustness of chaining, where a few workers are 

strategically cross-trained. Simchi-Levi and Wei (2012) show mathematically why long 

chain, in which plants are endowed with the capacity to produce exactly two different 

products and every product is produced by exactly two plants, is nearly as efficient as full 

flexibility. Easton (2011) uses a two-stage stochastic model to analyze the relationship 

between cross-training and scheduling flexibility. Wright and Bretthauer (2010) develop 

a model that coordinates nurse scheduling, short term adjustments to the schedule, and 

float and travel nurse decisions to evaluate the benefits of using a flexible workforce. Our 

models include external agency nurses, while also incorporating patient and nurse 

outcomes, something not done in the previously mentioned studies. 

2.2.2. Patient Outcomes, Nurse Satisfaction, and Hospital Outcomes Literature  

The hospital capacity planning literature discussed above typically addresses the impact 

of capacity planning decisions on efficiency and costs related to nurse wages, beds, and 

facilities. However, those decisions also have a significant impact on patient outcomes, 

nurse satisfaction, and a variety of other hospital performance measures. By modeling the 

impact of nurse staffing levels on patient outcomes and nurse satisfaction, our capacity 

planning models help to fill this gap in the literature. Fortunately, there is a large body of 

empirical studies related to capacity planning decisions in the medical, nursing, and 

healthcare services literature.  

Table 2.1 categorizes the medical, nursing, and healthcare services literature 

according to the type of hospital capacity planning decisions studied and the outcomes 



www.manaraa.com

 

11 

 

that the decisions impact. As can be seen below, many of the decisions addressed in this 

literature are conventional types of operations management decisions such as the volume 

of hospitals and physicians, number of hospital beds, hospital occupancy, and the care 

environment. Occupancy rate and patient volume are shown to have considerable impacts 

on mortality rates and process quality (Bond et al. 1999, Phibbs et al. 2007, Theokary and 

Ren 2011). Care environments of hospitals also have a significant influence on medical 

and nursing outcomes. According to Aiken et al. (2008), patients have significantly lower 

mortality rates and failure to rescue in hospitals with better care environments. Spence 

Laschinger and Leiter (2006) conclude that both patient safety outcomes and nurse 

burnout are related to the quality of the nursing practice work environment. 

Patient-to-nurse ratios and nurse staffing levels are the decisions in the medical 

literature that are most relevant to this chapter. Patient-to-nurse ratios are one of the 

capacity planning decisions that have received much attention from nursing and medical 

scholars for the past several years.  Aiken et al. (2002) analyze the association between 

patient-to-nurse ratios and patient mortality, failure-to-rescue, and factors related to nurse 

retention. They find that each additional patient per nurse is associated with a significant 

increase in patient mortality and a significant decrease in the odds of job satisfaction. 

Rothberg et al. (2005) evaluate the impact of various nurse staffing ratios and study the 

tradeoff between costs and mortality rates. Kane et al. (2007b) examine the association 

between nurse staffing and patient outcomes in acute care hospitals and find increased 

staffing to be associated with lower mortality, lower length of stay, and decreased odds 

ratios of various adverse medical outcomes. McCue et al. (2003) find that an increase in 

nurse staffing levels is associated with an increase in operating costs, but find no 
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statistically significant decrease in profits. Also, Kane et al. (2007b) and Shamliyan et al. 

(2009) discuss the testing of causality between nurse staffing levels and outcome 

measures. Lankshear et al. (2005) state that the weight of evidence in their study is 

strongly suggestive of a causal relationship. Lin (2014) identifies a causal relationship 

between nurse staffing and quality of care in nursing homes and finds that registered 

nurse staffing has a large and significant impact on quality of care. 

There have been numerous additional studies on the effect of nurse staffing levels 

and utilization of a flexible workforce on medical outcomes. For example, Cho et al. 

(2003) observe that a 10% increase in registered nurse proportion of the nursing 

personnel is associated with a 9.5% decrease in the odds of pneumonia. According to 

Newhouse et al. (2005), a 10% increase in agency nurse use is related to a significant 

decrease in the estimated odds of death. Aiken et al. (2007) study the relationship 

between supplemental nurse staffing and quality of care and find that each 10% increase 

in the proportion of nonpermanent nurses results in a 9% decrease in permanent nurse 

burnout, a 28% increase in the likelihood of leaving within one year, and improved 

patient outcomes. Needleman et al. (2006) show that an increase in hospital costs may be 

justified by a reduction in adverse outcomes and patient deaths depending on the value 

patients and payers assign to avoided deaths and complications. Hugonnet et al. (2007) 

find that a higher staffing level is associated with a greater than 30% infection risk 

reduction. Furthermore, the results in Tourangeau et al. (2007) show that the proportion 

of registered nurses in the staff mix and the level of education for the nurses have a 

significant effect on the 30-day mortality rate. 
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Despite the availability of this large body of empirical studies from the nursing 

and medical literature, there has been very little effort to utilize them in healthcare 

operations research decision models. A contribution of this essay is to begin bridging that 

gap by incorporating various nurse and patient outcomes in an operations research model 

for determining patient-to-nurse ratios and staffing levels. 

2.3. Patient- and Nurse-Oriented Staffing Ratio Decisions 

We begin with two models that capture the key element of the essay: to put a dollar 

figure on quality of patient care and nurse turnover and analyze how it impacts the nurse 

staffing ratio decision. The first model illustrates how to incorporate patient quality of 

care and adverse outcomes into the staffing ratio decision. The second model focuses on 

the effect of patient-to-nurse ratios on patient length of stay and nurse turnover.  

2.3.1. Incorporating Patient Outcomes into the Nurse Staffing Ratio Decision 

We begin by presenting a base model that incorporates the impact of patient-to-nurse 

ratios on patient outcomes when making nurse staffing decisions. With this model, we 

can consider such outcomes as the relationship between patient-to-nurse ratios and 

bloodstream infections, hospital-acquired pneumonia, patient mortality, unplanned 

extubation, urinary tract infections, patient falls, and other patient outcomes. For example, 

Kane et al. (2007b) report that each additional patient assigned per nurse is associated 

with a 16% increase in nosocomial bloodstream infections. The cost per patient with a 

bloodstream infection has been reported in the range of $20,000 to $30,000 (Anderson et 

al. 2007, Scott 2009) and the infection rate has been reported at 0.36 per 1,000 patient 
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days (Anderson et al. 2007). With this data and our model, we can attach a cost to 

bloodstream infections as a function of the patient to nurse ratio.  

Decision Variables – Problems (P1) and (P2) 

𝑟      Patient-to-nurse ratio for the unit (stage 1 decision) 

𝑛      Weekly nurse staffing level measured as “nurse shifts” in the unit (stage 1) 

𝑛𝐴 Weekly external agency nurse shifts needed (stage 2 decision, i.e., recourse) 

 

Decision Variable – Problems (P3) and (P4) 

𝑟      Patient-to-nurse ratio for the unit 

  

Parameters 

𝜆 Number of patients admitted per week in the unit 

𝑔  Weekly demand measured as “patient shifts” in the unit (“patient days” × 

number of shifts per day)  

𝑔(𝜔)  Weekly demand (“patient shifts”) in the unit with c.d.f. Φ resulting from 

outcome 𝜔 of a random event 

𝛿  Adjustment factor to account for uncertainty in staffing needs  

𝛾𝑖  Rate of occurrence for adverse outcome 𝑖 
𝛽𝑖 Odds ratio for adverse outcome 𝑖 with respect to a one unit increase in the 

patient-to-nurse ratio 

𝛽𝐿𝑂𝑆 Odds ratio for patient length of stay with respect to a one unit increase in the 

patient-to-nurse ratio 

𝛽𝑇𝑂      Odds ratio for nurse burnout with respect to a one unit increase in the patient-to-

nurse ratio 

𝜌  Weekly nurse turnover rate 

𝜇  Nurse burnout to turnover conversion factor 

𝜎 Average number of shifts worked in a week by each nurse 

𝑟𝑏   Base level patient-to-nurse ratio in the unit  

𝑟, 𝑟   Lower and upper bounds on patient-to-nurse ratio 𝑟  

𝑐𝑖 Cost per occurrence of adverse outcome 𝑖  
𝑐𝑠      Wage per shift per nurse 

𝑐𝐴      Wage per shift per agency nurse 

𝑐𝑏𝑒𝑑  Cost per shift of an occupied bed (excluding nurse wages) at base patient-to-

nurse ratio 

𝑐𝑇𝑂 Cost per nurse turnover  

Table 2.2. Notation 

Consider a typical medical/surgical unit in a hospital. We present a two-stage 

stochastic programming model where the stage one decisions of interest include setting 

the patient-to-nurse ratio in the unit and deciding the number of nurses in the unit 
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available to work a shift at the beginning of time horizon. As the patient-to-nurse ratio 

increases, fewer nurses are needed to care for the patients and staffing costs go down, but 

quality of care declines and the corresponding quality costs go up. Patient demand is 

random. If patient demand exceeds the nurse capacity, then the stage two (recourse) 

decision involves obtaining additional nurses from an external agency, typically at a 

higher cost than the hospital unit nurses. Agency nurses give hospitals the short term 

ability to adhere to the patient-to-nurse ratio. We assume infinite agency nurse pool. 

Demand is represented by the number of “patient shifts” during which the nurse needs to 

provide the care. “Patient shifts” is simply a patient day multiplied by the number of 

shifts in a day. The nurse staffing level is represented by the number of “nurse shifts”, 

which is the sum of the number of shifts worked by the nurses. Model notation is 

presented in Table 2.2.  

We formulate this two-stage stochastic nonlinear programming problem as 

follows: 

 (P1)     min 𝐹1 = 𝑐𝑠𝑛 + ∑ (𝛽𝑖
𝑟−𝑟𝑏)𝛾𝑖𝜆𝑐𝑖

𝑚
𝑖=1 + 𝒬(𝑛, 𝑟) (2.1) 

 s.t. 𝑟 ≤ 𝑟 ≤ 𝑟 (2.2) 

 𝑛 ≥ 0  (2.3) 

The function 𝒬(𝑛, 𝑟) is defined as:  

 𝒬(𝑛, 𝑟) = 𝐸[𝑄(𝑛, 𝑟, 𝑔(𝜔))] (2.4) 

The second stage (recourse) problem is:  

 (P1-R) 𝑄(𝑛, 𝑟, 𝑔(𝜔)) = min 𝑐𝐴𝑛𝐴 (2.5) 
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 s.t.      𝑛𝐴 ≥ max [
𝑔(𝜔)

𝑟
− 𝑛, 0] (2.6) 

The first term of the objective function (2.1) represents the wage costs 

corresponding to employing 𝑛 nurse shifts in the unit. The second term in (2.1) measures 

the sum of the costs incurred by various adverse outcomes as a function of the patient-to-

nurse ratio and uses odds ratios. Subscript 𝑖 represents adverse outcome 𝑖 (e.g., infection, 

patient fall, hospital-acquired pneumonia, et cetera) with odds ratio 𝛽𝑖, rate of occurrence 

𝛾𝑖, and cost parameter 𝑐𝑖. Assume the base level of the patient-to-nurse ratio is 𝑟𝑏 = 6 and 

that from Kane et al. (2007b) the bloodstream infection odds ratio is 𝛽𝑖 = 1.16. Then, for 

example, a patient-to-nurse ratio of 𝑟  = 8 implies that the infection rate at 𝑟  = 8 is 

1.162 = 1.346 times higher than the infection rate at the base level 𝑟 = 6. The third term 

in (2.1) is the expected value of the second stage agency nursing costs as defined in (4) 

and Problem (P1-R). Constraint (2.2) sets upper and lower bounds on the decision 

variable 𝑟  and constraint (2.3) enforces nonnegativity of 𝑛 . The stage two recourse 

Problem (P1-R) determines the number of agency nurse shifts needed. It minimizes 

agency nurse costs (2.5) while ensuring in constraint (2.6) that enough agency nurses are 

used to achieve the target patient-to-nurse ratio.  

The optimal solution to the recourse Problem (P1-R) can be written in closed 

form as follows: 

 𝑛𝐴
∗ = max [

𝑔(𝜔)

𝑟
− 𝑛, 0] (2.7) 

 𝑄(𝑛, 𝑟, 𝑔(𝜔)) = 𝑐𝐴 × max [
𝑔(𝜔)

𝑟
− 𝑛, 0] (2.8) 
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By analyzing the Hessian of (2.1) with a general patient demand distribution Φ, we 

establish convexity properties of the objective function of Problem (P1), as stated in 

Proposition 2.1 below. Please refer to the Appendix A for proofs of Propositions. 

PROPOSITION 2.1. For 𝛽𝑖 ≥ 1  for all 𝑖 , the objective function of Problem (P1) is 

convex with respect to 𝑛 and 𝑟 for a general distribution 𝛷 of patient demand. 

As an illustrative example, assume that patient demand in the unit is uniformly 

distributed between 𝑔̲ and 𝑔̅. Then the objective function and first order conditions of 

Problem (P1) become:  

𝐹1 = 𝑐𝑠𝑛 + ∑(𝛽𝑖
𝑟−𝑟𝑏)𝛾𝑖𝜆𝑐𝑖

𝑚

𝑖=1

+
𝑐𝐴

2𝑟
(

1

𝑔̅ − 𝑔̲
) (𝑔̅2 − 𝑛2𝑟2) − 𝑐𝐴𝑛 (

1

𝑔̅ − 𝑔̲
) (𝑔̅ − 𝑛𝑟) 

𝜕𝐹1

𝜕𝑛
= 𝑐𝑠 +

𝑐𝐴𝑛𝑟

𝑔̅ − 𝑔̲
−

𝑐𝐴𝑔̅

𝑔̅ − 𝑔̲
= 𝑐𝑠 +

𝑐𝐴(𝑛𝑟 − 𝑔̅)

𝑔̅ − 𝑔̲
= 0 

𝜕𝐹1

𝜕𝑟
=

𝑐𝐴(𝑛𝑟 − 𝑔̅)(𝑛𝑟 + 𝑔̅)

2(𝑔̅ − 𝑔̲)𝑟2
+ ∑(𝛽𝑖

𝑟−𝑟𝑏)𝛾𝑖𝜆𝑐𝑖 ln 𝛽𝑖

𝑚

𝑖=1

= 0 

Therefore, the optimal number of nurse shifts is:  

𝑛∗ =
𝑐𝐴𝑔̅ − 𝑐𝑠(𝑔̅ − 𝑔̲)

𝑐𝐴𝑟
 

Note that agency nurses typically have higher wages than unit nurses (i.e., 𝑐𝐴 ≥ 𝑐𝑠), 

implying 𝑛∗ ≥ 0. Substituting 𝑛∗ into 𝐹1 and the first order condition 
𝜕𝐹1

𝜕𝑟
 = 0 yields:  

𝐹1 =
2𝑐𝑠𝑐𝐴𝑔̅ − 𝑐𝑠

2(𝑔̅ − 𝑔̲)

2𝑐𝐴𝑟
+ ∑(𝛽𝑖

𝑟−𝑟𝑏)𝛾𝑖𝜆𝑐𝑖

𝑚

𝑖=1
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𝜕𝐹1

𝜕𝑟
=

−2𝑐𝑠𝑐𝐴𝑔̅ + 𝑐𝑠
2(𝑔̅ − 𝑔̲)

2𝑐𝐴𝑟2
+ ∑(𝛽𝑖

𝑟−𝑟𝑏)𝛾𝑖𝜆𝑐𝑖 ln 𝛽𝑖

𝑚

𝑖=1

= 0 

Although we cannot solve for the optimal 𝑟∗ in closed form and must therefore 

use a numerical search method, we can determine an effective upper bound on 𝑟∗ that 

would be helpful for hospitals in determining the optimal patient-to-nurse ratios. 

PROPOSITION 2.2. Assume that patient demand is uniformly distributed between 𝑔̲ and 

𝑔̅ and that we require 𝑟 ≥ 𝑟𝑏. Then the optimal patient-to-nurse ratio 𝑟∗ has an upper 

bound of min (max (√
2𝑐𝑠𝑐𝐴𝑔̅−𝑐𝑠

2(𝑔̅−𝑔̲)

2𝑐𝐴 ∑ 𝛾𝑖𝜆𝑐𝑖𝑙𝑛𝛽𝑖
𝑚
𝑖=1

, 𝑟𝑏) , 𝑟̅).    

2.3.2. Patient Length of Stay and Nurse Turnover 

Problem (P1) can be used to analyze one or more adverse patient outcomes when setting 

patient-to-nurse ratios. Next we consider the effect of the patient-to-nurse ratio on two 

specific measures: patient length of stay and nurse turnover. The cumulative effect of the 

adverse outcomes will impact patient morbidity and patient mortality. Increased 

morbidity will lead to longer patient length of stay in the hospital and thus higher nursing 

and bed costs. Therefore, in this subsection we modify the previous analysis in three 

ways: (1) we use patient length of stay as the one quality outcome to capture the 

combined effect of individual adverse outcomes, (2) we incorporate the impact of patient-

to-nurse ratios on length of stay and thus nurse wages and occupied bed costs, and (3) we 

incorporate the impact of patient-to-nurse ratios on nurse turnover. Once again, refer to 

Table 2.2 for model notation. 

The two-stage stochastic nonlinear programming problem now becomes: 
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 (P2)   min 𝐹2 = 𝑐𝑠𝑛 + (𝛽𝐿𝑂𝑆
𝑟−𝑟𝑏)𝑔𝑐𝑏𝑒𝑑 + (𝛽𝑇𝑂

𝑟−𝑟𝑏)𝜌𝜇 (
𝑛

𝜎
) 𝑐𝑇𝑂 + 𝒬(𝑛, 𝑟) (2.9) 

 s.t. 𝑟 ≤ 𝑟 ≤ 𝑟 (2.10) 

 𝑛 ≥ 0  (2.11) 

The function 𝒬(𝑛, 𝑟) is defined as:  

 𝒬(𝑛, 𝑟) = 𝐸[𝑄(𝑛, 𝑟, 𝑔(𝜔))] (2.12) 

The second stage (recourse) problem is:  

 (P2-R) 𝑄(𝑛, 𝑟, 𝑔(𝜔)) = min 𝑐𝐴𝑛𝐴 (2.13) 

 s.t.      𝑛𝐴 ≥ max [
(𝛽𝐿𝑂𝑆

𝑟−𝑟𝑏)𝑔(𝜔)

𝑟
− 𝑛, 0]. (2.14) 

Length of stay impacts the total number of shifts during which a bed is occupied 

by a patient and thus the non-wage portion of occupied bed costs, as illustrated in the 

second term of (2.9). Patient-to-nurse ratios impact nurse turnover (Aiken et al. 2002), as 

shown in the third term of (2.9). Note that patient demand is impacted by the relationship 

between the patient-to-nurse ratio and patient length of stay, as can be seen in constraint 

(2.14). The optimal solution to the recourse Problem (P2-R) can be written in closed form 

as follows: 

 𝑛𝐴
∗ = max [

(𝛽𝐿𝑂𝑆
𝑟−𝑟𝑏)𝑔(𝜔)

𝑟
− 𝑛, 0] (2.15) 

 𝑄(𝑛, 𝑟, 𝑔(𝜔)) = 𝑐𝐴 × max [
(𝛽𝐿𝑂𝑆

𝑟−𝑟𝑏)𝑔(𝜔)

𝑟
− 𝑛, 0] (2.16) 

If patient demand is uniformly distributed between (𝛽𝐿𝑂𝑆
𝑟−𝑟𝑏)𝑔̲ and (𝛽𝐿𝑂𝑆

𝑟−𝑟𝑏)𝑔̅, we 

again solve for the number of nurses using first order conditions as follows. While 



www.manaraa.com

 

21 

 

numerical experiments seem to suggest the objective function (2.9) of (P2) is convex, we 

have not been able to prove that this is true.  

𝑛∗ =
(𝛽𝐿𝑂𝑆

𝑟−𝑟𝑏)(𝛽𝑇𝑂
−𝑟𝑏) [(𝑐𝐴𝑔̅ − 𝑐𝑠(𝑔̅ − 𝑔̲)) 𝜎𝛽𝑇𝑂

𝑟𝑏 − 𝑐𝑇𝑂(𝑔̅ − 𝑔̲)𝛽𝑇𝑂
𝑟 𝜌𝜇]

𝑐𝐴𝑟𝜎
≥ 0 

2.4. Model with Average Patient Demand 

In this section we consider simplified versions of Problems (P1) and (P2) where we use 

average patient demand rather than treating demand as a random variable. Then we 

compare the performance of the average demand models versus the random demand 

models. Similar to the presentation in previous section, we first consider only adverse 

patient outcomes, and then more specifically study the impact of patient to nurse ratio 

decisions on patient length of stay and nurse turnover.  

2.4.1. Base Model 

Once again, consider a typical medical/surgical unit in a hospital. The following model 

determines the optimal patient-to-nurse ratio r  while incorporating the trade-off between 

nurse staffing costs and quality of care costs. As the patient-to-nurse ratio increases, 

fewer nurses are needed to care for the patients and staffing costs go down, but quality of 

care declines and the corresponding quality costs go up. Problem (P3) uses average 

patient demand 𝑔 rather than treating demand as a random variable. Model notation is 

presented in Table 2.2.  

 (P3)   min 𝐹3 = 𝛿 (
𝑔

𝑟
) 𝑐𝑠 + ∑ (𝛽𝑖

𝑟−𝑟𝑏)𝛾𝑖𝜆𝑐𝑖
𝑚
𝑖=1  (2.17) 

 s.t. 𝑟 ≤ 𝑟 ≤ 𝑟 (2.18) 
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The first term of objective function (2.17) represents the wage costs 

corresponding to the number of nurse shifts required to achieve a specific patient-to-nurse 

ratio. The parameter 𝛿 is an adjustment factor to account for uncertainty in staffing needs. 

The second term of (2.17) measures the sum of the costs incurred by various patient 

outcomes (subscript 𝑖) as a function of the patient-to-nurse ratio and makes use of odds 

ratios 𝛽𝑖. Constraint (2.18) sets lower and upper bounds on the decision variable 𝑟. While 

we cannot solve for the optimal 𝑟∗ in closed form, Proposition 2.3 below verifies that the 

objective function of (P3) is convex with respect to 𝑟 and thus first-order conditions can 

be used to identify the optimal patient-to-nurse ratio. Numerical results will be reported 

later in this section.  

PROPOSITION 2.3. Objective function (2.17) of Problem (P3) is convex with respect to 

𝑟. 

2.4.2. Patient Length of Stay and Nurse Turnover 

Similar to Section 2.3, we next analyze the patient-to-nurse ratio decision incorporating 

the impact of 𝑟 on patient length of stay and nurse turnover. Problem (P4) uses average 

patient demand instead of treating demand as a random variable as in Problem (P2). 

Refer to Table 2.2 for notation. 

 (P4)   min 𝐹4 = 𝛿(𝛽𝐿𝑂𝑆
𝑟−𝑟𝑏) (

𝑔

𝑟
) 𝑐𝑠 + (𝛽𝐿𝑂𝑆

𝑟−𝑟𝑏)𝑔𝑐𝑏𝑒𝑑 + (𝛽𝑇𝑂
𝑟−𝑟𝑏)𝜌𝜇 (

𝑔

𝑟
×

1

𝜎
) 𝑐𝑇𝑂 (2.19) 

 s.t. 𝑟 ≤ 𝑟 ≤ 𝑟 (2.20) 

Changes in the patient-to-nurse ratio impact patient length of stay (Kane et al. 

2007b), which affects the number of nurses needed and thus nurse wage costs. This 

relationship is captured in the first term of objective function (2.19). Similar to the 
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models presented in the previous section, the second and third terms in (2.19) measure 

the non-wage occupied bed cost and nurse turnover cost as a function of the patient-to-

nurse ratio. Proposition 2.4 verifies that the objective function of (P4) is convex with 

respect to 𝑟 and thus first-order conditions can be used to identify the optimal patient-to-

nurse ratio. 

PROPOSITION 2.4. Objective function (2.19) of Problem (P4) is convex with respect to 

𝑟. 

2.4.3. Results  

Here we report computational results with Problem (P4) to better understand how 

incorporating quality of patient care and nurse turnover will impact patient-to-nurse ratio 

decisions. As the results show, it is not always cost-efficient to implement higher patient-

to-nurse ratios and use fewer nurses, thereby suggesting that providing higher quality of 

care can be a sound business decision. Also, at the end of this subsection, we compare the 

performance of Problem (P4), which uses average patient demand, with the more 

complex Problem (P2), which handles stochastic demand, and show that (P4) performs 

well with 𝛿 = 1. Therefore, we use 𝛿 = 1 in the remainder of the chapter. 

We use common representative numbers as reported in the literature for the 

following parameters: an increase of one patient per nurse is associated with a 23% 

increase in nurse burnout (𝛽𝑇𝑂 = 1.23) (Aiken et al. 2002) and a 13% increase in patients’ 

length of stay (𝛽𝐿𝑂𝑆 = 1.13) (Kane et al. 2007b). The value 𝛽𝐿𝑂𝑆 = 1.13  is a rough 

approximation obtained from Kane et al. (2007b) as follows. They report that an increase 

of one registered nurse full time equivalent leads to a 31% reduction in patient length of 
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stay. Then as in Appendix F of the Kane et al. (2007a) AHRQ report, if we assume that 

one RN FTE/patient day = 8 RN hours/patient day, this implies patient/RN ratio = 24 

hours/8 hours = 3 patients per nurse. Thus, if we assume an increase of one RN full-time 

equivalent per patient day is equivalent to a decrease of 3 in the patient-to-nurse ratio, 

then the odds ratio corresponding to an increase of one patient per nurse turns out to be 

1.13. This obviously is a rough estimate since the precise conversion depends on the 

staffing level before the increase or decrease. The annual nurse turnover rate is assumed 

to be 20% (𝜌 = 0.2) (Kosel and Olivo 2002), and we use a conservative estimate of 

$30,000 for the cost of replacing a nurse (𝑐𝑇𝑂 = 30,000) (Rothberg et al. 2005). We 

report our results in weekly total costs, and thus use the weekly nurse turnover rate 

converted from the annual rate. We assume each nurse works five shifts per week (𝜎 =

5). Based on Rothberg et al. (2005), we use a nurse burnout to turnover conversion factor 

𝜇 of 1. We use a non-wage patient length of stay cost 𝑐𝑏𝑒𝑑 of $100 per day. Because 

turnover costs, the burnout to turnover conversion factor, and non-wage length of stay 

costs are difficult to estimate, we also perform sensitivity analysis on these three 

parameters in a later section. We assume an average length of stay in the unit of 3 days, 

and the base level patient-to-nurse ratio is 6:1. For wage values, we use data collected 

from three hospitals for this study: one is located on the west coast of the U.S. and two 

are located in the Midwest. They are typical U.S. hospitals and range in size from 350-

550 beds. We obtained information on nurse wages, shift types, staff size and mix, shift 

preferences and availability, demand levels, and patient-to-nurse ratios. All the figures in 

this chapter are based on results for one particular hospital of the three from which we 

gathered data. The results for the other two hospitals are almost identical in the shape of 
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the curve, with the only difference being the cost scale on the y-axis. Thus, the 

conclusions from the analyses below apply qualitatively to all three hospitals. 

Figure 2.1 illustrates how total costs are impacted when patient-to-nurse ratio 

effects on patient length of stay (LOS) and nurse turnover are included as compared to 

many traditional operations management scheduling models that ignore these effects.  

 

Figure 2.1. Total Cost When Including Patient-to-Nurse Ratio Effects on Nurse 

Turnover and Patient Length of Stay (LOS)  

The “Schedule Costs Only” curve is measured by 𝛿 (
𝑔

𝑟
) 𝑐𝑠 and ignores the patient-

to-nurse ratio impact on nurse turnover and patient length of stay. This myopic approach 

yields an optimal ratio at its upper bound of 8. This result explains the desire of some 

hospital administrators to implement a high patient-to-nurse ratio when legislation 

requiring a certain ratio was first developed in California. Surprisingly, the result does 

not change when we add the effect of change in turnovers caused by different patient-to-
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nurse ratios (i.e., add (𝛽𝑇𝑂
𝑟−𝑟𝑏)𝜌𝜇 (

𝑔

𝑟
×

1

𝜎
) 𝑐𝑇𝑂 to the “Schedule Costs Only” curve to get 

the “Plus Turnover Effect” curve). Although the turnover rate would increase as the 

patient-to-nurse ratio becomes larger, the number of nurses scheduled per shift decreases, 

thereby essentially offsetting the impact of higher turnover. Finally, we add the effects of 

patient-to-nurse ratios on length of stay, represented by the “Plus Turnover & LOS 

Effects” curve. This curve is the total objective function value of Problem (P4). Figure 

2.1 shows that the optimal ratio that minimizes the total costs for this surgical unit is 5:1. 

As the patient-to-nurse ratio becomes larger, the marginal benefit of employing fewer 

nurses decreases while the marginal cost of increasing length of stay rises. Different from 

when only turnover is considered, it is now possible that a lower patient-to-nurse ratio 

may not always require more nurses to be scheduled per shift, because better quality of 

care, which is represented by each nurse having to care for fewer patients, can decrease 

patients’ length of stay.  

Although one might argue that the cost improvement is not large enough to 

warrant a change in policy, we speculate that where the money is spent can make a big 

difference in how well the hospital can compete in the market. Figure 2.2 shows the 

breakdown of hospital spending at different patient-to-nurse ratios. Higher patient-to-

nurse ratios allow hospitals to enjoy savings in nurse wages, but require them to spend 

those savings for dealing with adverse outcomes. In addition to providing fairly small yet 

meaningful benefit in total costs, lower patient-to-nurse ratios also allow hospitals to 

enjoy further intangible benefits including improvements in patient experiences, nurse 

satisfaction, and reputation that results in competitive advantages both in the market and 

in recruiting employees.  
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Figure 2.2. Breakdown of Total Costs into Schedule Costs and Turnover plus LOS 

Costs 

Next we compare the performance of Problem (P4) with Problem (P2) for the 

case of uniformly distributed demand. Figure 2.3 reports the optimal objective values of 

(P2) relative to (P4). We also test different 𝛿  values in Problem (P4), which 

approximately accounts for uncertainty in staffing needs, to determine which gives the 

most similar results to Problem (P2). As illustrated in Figure 2.3, Problem (P4) performs 

very closely to Problem (P2) with 𝛿 = 1, always staying below a 5% difference in cost for 

reasonable ranges of the patient-to-nurse ratio. Because Problem (P4) is much simpler to 

use while providing results very similar to those from Problem (P2) with stochastic 

demand, it can be a very valuable tool for hospital management in making staffing and 

policy decisions. Thus, the remainder of the chapter presents results from Problem (P4) 

using 𝛿 = 1.  
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Figure 2.3. Comparison of Problem (P2) Relative to Problem (P4) for Various 𝜹 

Values 

2.5. Sensitivity Analysis 

In this section, we perform sensitivity analysis to gain better insights into some of the 

parameters whose values are more difficult to estimate. We focus on Problem (P4) given 

its relative simplicity and previously reported accuracy. One key parameter that may vary 

is the cost per nurse turnover. We initially use $30,000 per turnover, which is a 
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costs, on average, $46,000 to replace a medical/surgical nurse and about $64,000 to 

replace a critical care nurse. The Maryland Hospital Association (2000) estimates that it 
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nurse ranging between $20,000 and $60,000. Figure 2.4 shows that the results from 

solving Problem (P4) are robust with respect to the turnover cost per nurse. 

 

Figure 2.4. Total Costs for Different Nurse Turnover Cost Values  

Next we consider the sensitivity of the results to the value of the odds ratio for 

patient length of stay. Figure 2.5 presents the impact of various patient length of stay 

odds ratio values (𝛽𝐿𝑂𝑆) on total costs. Although the cost savings from a decrease in 

patient length of stay resulting from lowering the patient-to-nurse ratio is almost always 

significant at higher ranges of ratios (i.e. 7:1 or 8:1), it does not become high enough to 

offset the increase in staffing costs for the lower ranges of ratios (i.e. 4:1 or 5:1) until we 

use the odds ratio value of 1.13, which is the value we calculated from Kane et al. 

(2007b). However, any value greater than 1.13 would intensify the cost savings, thereby 

making the lower ratios cost-effective.  
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Figure 2.5. Total Costs for Various Length of Stay Odds Ratios (𝜷𝑳𝑶𝑺) 

We also perform sensitivity analysis on the nurse burnout odds ratio, which is 

directly related to nurse turnover, and the nurse burnout to turnover conversion factor. It 

has been reported that an increase of one patient per nurse is associated with a 23% 

increase in nurse burnout (𝛽𝑇𝑂 = 1.23) (Aiken et al. 2002), and this change in nurse 

burnout needs to be converted into change in nurse turnover. A conversion factor of 1 

means a 10 percent increase in nurse burnout would lead to 10 percent increase in nurse 

turnover. We test the nurse burnout odds ratios from 1.1 to 1.4 and burnout to turnover 

(abbreviated as TO in Figure 2.7) conversion factor range from 0.6 to 1.2 to examine the 

robustness of the results regarding patient-to-nurse ratio and total costs. Figure 2.6 and 

Figure 2.7 show that the results presented in Section 2.4.3 are quite robust with regards to 

the various burnout odds ratios and conversion factor values. 
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We have used a conservative estimate of $100 per patient day for non-wage 

length of stay cost. Given the complications of identifying actual hospital costs versus 

what a hospital charges, and hospital variable costs versus fixed costs with respect to a 

change in patient length of stay, this is a difficult cost to estimate. For example, Rothberg 

et al. (2005) mention a patient length of stay cost of $1,000 per day which includes nurse 

wages, but it is difficult to know what exactly is included in this value and how the 

components are determined. Figure 2.8 shows the results for the non-wage length of stay 

cost varying between $100 and $500 per day.  

 

Figure 2.6. Total Costs for Various Burnout Odds Ratios  
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Figure 2.7. Total Costs for Various Nurse Burnout to Turnover (TO) Conversion 

Factors  

 

Figure 2.8. Total Costs for Various Non-Wage Occupied Bed Cost per Patient Day 
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2.6. Conclusions and Future Research  

Hospital capacity planning is one of the difficult challenges facing the healthcare industry. 

In particular, the patient-to-nurse ratio decision has been extensively debated and studied 

by policy makers, hospital managers, and healthcare professionals. It has been widely 

assumed that lower patient-to-nurse ratios would increase the costs incurred by hospitals 

while improving the quality of patient care. Thus, the debate has been to find the optimal 

ratio that allows hospitals to provide adequate quality of care without incurring excessive 

costs. In addition, patient and nurse outcomes have been mostly ignored in traditional 

operations management approaches to hospital capacity planning. Consequently, the 

relevance of healthcare operations management decision models may be limited and 

potential cost savings from higher quality of care may have been neglected.  

To address these issues, we develop nurse staffing models that incorporate 

adverse patient outcomes and nurse satisfaction, and show that lower nurse staffing ratios 

do not necessarily lead to higher costs. Our models show that lower staffing ratios can be 

more cost-effective even for conservative estimates of costs for patient length of stay and 

nurse turnover. Of course, the results will depend on the particular hospital setting under 

consideration. Our goal is to present a methodology for identifying optimal nurse staffing 

ratios for a given setting. Our numerical results suggest the need to incorporate medical 

and nurse outcomes into operations management models to correctly portray the tradeoffs 

faced by healthcare management.  

While we focus on a few adverse outcomes such as patient length of stay and 

nurse turnover, there are many more outcomes that need to be considered. For example, it 
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would be interesting to investigate how including the effects of agency nurse usage, 

patient mix, and hospital volume on quality of care costs and nurse turnover would 

further change the optimal patient-to-nurse ratio. System shocks such as flu season and 

reduced capacity of new nurses from nurse turnover may also have impacts on the 

staffing decision. Moreover, this study can be extended by distinguishing among different 

hospital units according to their level of care. In addition, approaches other than higher 

nurse staffing levels could be studied for improving patient care, such as nurse-driven 

process improvement (Sims 2003). Such extensions would provide valuable insights to 

the healthcare industry to further improve its efficiency, financial health, societal impacts, 

and the ability to provide high quality patient care.  
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CHAPTER 3 

BEHAVIOR-AWARE WORKFORCE STAFFING 

Abstract 

Empirical studies of service systems have demonstrated evidence of speedup and 

slowdown, which are defined as an increase and decrease, respectively, of service rate as 

a result of changes in workload. We model speedup and slowdown in a very general way 

to represent many possible joint effects of these behavioral phenomena. We use this 

model to study the impact of speedup and slowdown on a multi-period workforce staffing 

problem with recourse. We identify conditions under which the optimal workload, 

defined to be the ratio of requests to workers, is independent of the number of customer 

requests in the system, but we show that in general, a dynamic recourse policy is optimal. 

When a dynamic recourse policy is optimal, we show that the slowdown effect is strong 

enough to cause the firm to aggressively utilize expensive on-call workers to avoid future 

system congestion. This effect exists even in the presence of discounted future costs. 

Using a numerical study, we demonstrate that a one-step look-ahead policy performs very 

well and is a viable alternative when the optimal policy is not practical to compute. 

3.1. INTRODUCTION 

In many service systems, such as hospitals, call centers, and restaurants, service is 

provided by staff whose speed of work is affected by the amount of work assigned to 

each worker. Recent empirical work has shown that such servers frequently employ a 

changing service rate (either deliberately or as an unintended consequence of system 

congestion) depending on the workload at any given time (KC and Terwiesch 2012, Tan 
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and Netessine 2014). Specifically, two countervailing effects have been observed: 

speedup, where servers increase the service rate as the amount of work increases, and 

slowdown, where servers decrease the service rate as the amount of work increases. There 

are many possible reasons why these phenomena may occur. For example, speedup may 

occur when workers feel more motivated by a high demand for their service, while 

slowdown may occur when congestion in the service system due to high demand 

interferes with workers’ ability to get their job done in a timely manner.  

Regardless of the causal mechanisms behind speedup and slowdown, their effects 

on the performance of a service system should not be ignored. Speedup of servers such as 

waiters in a restaurant or nurses in a hospital can decrease the number of servers needed 

to provide a target level of service, but slowdown can increase the number of servers 

needed. Therefore, management decisions about staffing and scheduling should reflect an 

understanding of how workload and service rate are related. Traditionally, staffing 

decisions are made in advance and in the presence of demand uncertainty.  Because the 

number of requests from customers (demand) is uncertain, staffing decisions must 

balance the possibility of understaffing (i.e., having too few workers to handle the 

demand, which leads to poor service quality or long service times) against the possibility 

of overstaffing (i.e., having too many workers, which leads to idle time or wasted staff 

resources). A schedule lead time is necessary because workers generally expect to be 

given their work schedules in advance: while workers prefer to be notified of their 

schedules as early as possible, a longer schedule lead time means more uncertainty in 

demand for the established schedule. 
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To mitigate the effects of demand uncertainty, many firms employ recourse 

actions to counter overstaffing and understaffing. Specifically, firms may depart from the 

established schedule and either obtain extra workers when understaffed or send workers 

home when overstaffed. Extra workers may be obtained through external employment 

agencies, cross-trained workers, or on-call workers. For simplicity, we will simply refer 

to these additional workers as “on-call workers”. On-call workers often incur a wage 

premium, paid either to the worker to mitigate the inconvenience of being on call or to 

the agency in exchange for the staff procurement service. When overstaffed, the firm may 

be able to reduce the number of workers and recoup at least some proportion of their 

wages. For example, it may be possible to find some volunteers who are willing to leave 

before the shift ends, without being paid for the rest of their shift. Workers who are sent 

home involuntarily may receive pay for part of their shift. Employers in some states, such 

as California, are required to pay their employees for certain unworked but regularly 

scheduled time (California Department of Industrial Relations 2001). These recourse 

actions are illustrative and similar recourse actions are available in various forms in many 

different industries. 

Staffing decisions, along with realized demand (i.e., the number of requests from 

customers), determine the workload, which we define to be the ratio of requests to 

workers. The impact of workload on the workers’ service rate should be considered when 

making both initial scheduling and recourse decisions. At the beginning of each shift, as 

realized demand is compared to the established schedule, the incumbent workload may 

be characterized as “low”, “moderate”, or “high” when the staffing is “overstaffed”, 

“adequately staffed” or “understaffed”, respectively. In Table 3.1, we summarize the 
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recourse actions with respect to the workload level and the potential behavioral impacts 

that should be considered in the staffing decisions. Because the workload resulting from 

staffing decisions has an impact on workers’ tendency to speedup or slowdown, 

considering these behaviors could lead to different staffing and recourse decisions 

compared to the case where these behaviors are ignored. By incorporating the workers’ 

behavior into the overall staffing decision making process, firms can improve their 

workers’ productivity and overall performance. 

Workload Staffing Status Staffing Adjustments Behavioral Issues to Consider 

Low Overstaffed 
Send some workers 

home 

 Speedup may increase the 

number of workers to send 

home 

 Slowdown may reduce the 

number of workers to send 

home  

Moderate 

 

Adequately 

Staffed 

 

No adjustments  

High Understaffed 
Obtain additional 

workers  

 Speedup may reduce the 

additional staffing needs 

 Slowdown may increase the 

additional staffing needs 

 

Table 3.1. Recourse Staffing Decisions and Behavioral Issues to Consider 

3.1.1. Incorporation of Speedup and Slowdown  

Figure 3.1(a) and Figure 3.1(b) show examples of monotonic relationships between the 

workload and the workers’ service rate. These S-shaped relationships represent the cases 

where only speedup is present (Figure 3.1a) and where only slowdown is present (Figure 

3.1b). Figure 3.2 shows examples of non-monotonic relationships between the workload 

and the workers’ service rate that are inverse U-shaped (if speedup occurs before 
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slowdown) and U-shaped (if slowdown occurs before speedup as workload increases), 

which can represent the joint effect of speedup and slowdown. Both U-shaped and 

inverse U-shaped relationships have been demonstrated in empirical studies (Batt and 

Terwiesch 2012, Jaeker and Tucker 2013, KC 2013, Tan and Netessine 2014). Intuitively, 

the nature of the relationship between workload and service rate should affect the 

magnitude of recourse actions taken and/or the quantitative interpretation of “low”, 

“moderate”, and “high” number of requests (in Table 3.1). We investigate the thresholds 

that separate these regions and their behavior with respect to changes in system 

parameters. We also study the staffing and recourse decisions when overstaffed and 

understaffed under the joint effects of speedup and slowdown. We characterize how the 

optimal workload changes with respect to the total amount of work that needs to be 

processed (number of requests in the system). In the “moderate” range where the system 

is adequately staffed, the workload is not constant in the number of requests (by 

definition since the number of workers is constant while the number of requests 

increases). We find that the workers’ tendency to slowdown causes the optimal workload 

when overstaffed or understaffed to vary in number of requests. Lastly, we examine when 

a fixed request-to-server ratio policy, which is commonly employed in practice, should be 

used by firms and the potential benefits in switching to the dynamic policy.   
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(a)      (b)

 
Figure 3.1. Functional Forms of Service Rate under (a) Speedup or (b) Slowdown 

Alone 

 (a)      (b)

 
 

Figure 3.2. Functional Forms of Service Rate under Both Speedup and Slowdown. 

(a) Inverse U-Shape Due to Speedup Occurring First; (b) U-Shape Due to Slowdown 

Occurring First 

3.1.2. Example: Hospital Nurse Staffing 

While behavior-aware service staffing is applicable in many industries and settings, we 

will illustrate the phenomenon by focusing on the health care industry and we use 

hospital nurse staffing to demonstrate more clearly the staffing procedures and issues 

introduced in the previous section. The presence of workload measures such as patient-

to-nurse (PTN) ratios and well-known recourse options such as “float” and agency nurses 
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make the healthcare industry a prime candidate for the consideration of behavioral issues 

in the staffing decision process. We also note that most nurses are scheduled in advance 

and on-call, agency, and cross-trained nurses require a wage premium. 

At one of our partner hospitals in Indiana, a nurse manager creates a monthly 

advance schedule that dictates how many and which nurses are scheduled for each shift in 

an inpatient unit. Although the manager has some idea of the patient demand distribution, 

there are uncertainties involved in new patient arrivals and patient discharges for each 

shift. The hospital targets a PTN ratio of 5 patients per nurse. While Indiana does not 

have any legislation on laws requiring a specific PTN ratio, it is noteworthy that 

California state law prevents hospitals from exceeding the PTN ratio of 5:1 in 

medical/surgical units, and other states are considering similar legislation as well. 

As each shift begins, the nurse manager on duty gains a much better 

understanding of the patient demand in the ward. The majority of the demand consists of 

patients who have already been admitted to the unit but have not yet been discharged. In 

addition, the manager anticipates new patient arrivals based on elective schedules and 

input from the emergency department and upstream units in the hospital (e.g., the 

Intensive Care Unit). Each day, there is a meeting between the nurse managers from each 

unit and the nurse manager of the float pool. They discuss the needs of each unit and the 

availability and skills of the float nurses, who represent the available pool of on-call 

workers for the nurse managers. During this meeting, the available float nurses are 

assigned to the units based on need. 



www.manaraa.com

 

42 

 

One factor that the managers do not explicitly consider when making initial nurse 

schedule and recourse staffing decisions is the behavioral impact of the workload. 

Examples of speedup include anticipating test results and providing patient care 

proactively. Examples of slowdown include nurses taking longer to pick up test results 

because they are busy handling other duties, or nurses being interrupted more frequently 

by requests from doctors leading to more setups or other inefficiencies. If the effects of 

speedup and slowdown are taken into account, mangers may make different scheduling 

and recourse decisions than would otherwise be chosen. Note that nurse workload can 

affect patient outcomes, which impacts patient length of stay (i.e., service rate). Therefore, 

our modeling of service rate as a function of workload can also capture quality of care 

effects. For these reasons, the behavioral phenomena of speedup and slowdown need to 

be considered to make sure that optimal staffing decisions are made by the manager. In 

this essay, we do not attempt to alter the slowdown or speedup dynamic—rather, we note 

that its presence has been widely observed, and we show how to account for its reality in 

the staffing process. 

The remainder of the chapter is organized as follows. Section 3.2 discusses 

literature relevant to this study. Section 3.3 presents the speedup/slowdown models and 

Markov decision process model. We begin by formulating a general problem for 

determining the optimal number of workers needed for each period and later consider 

special cases. Section 3.4 presents analytical results and Section 3.5 discusses numerical 

experiments and results. Section 3.6 provides some concluding remarks and opportunities 

for future research.  
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3.2. LITERATURE REVIEW 

Before presenting our model to integrate speedup and slowdown effects into a staffing 

model with recourse, we review relevant literature in three streams: speedup and 

slowdown effects on service rate, staffing with recourse actions, and patient-to-nurse 

(PTN) ratios. The third stream of research is highly relevant because recent studies on 

PTN ratios combined with controversial legislation mandating maximum PTN ratios in 

some states provide a strong motivation for studying workload in the healthcare setting. 

3.2.1. Speedup and Slowdown 

Empirical studies suggest that in many operational settings, the service rate provided by 

workers depends on the workload. In Table 3.2, we summarize recent articles 

demonstrating speedup and/or slowdown in service and manufacturing settings. For each 

article, we list the type of operational setting, the independent variable representing the 

workload, and the dependent variable representing the effect of speedup and/or slowdown.  
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Speedup has been shown to exist in many operational settings. In a manufacturing 

setting, Schultz et al. (1998) use a laboratory experiment to show that workers speed up 

when they are the cause of idle time on a production line. In the healthcare industry, KC 

and Terwiesch (2009) show that a 10% increase in system load reduces patient length of 

stay by two days for cardiothoracic surgery patients, and a 20% increase in the load for 

patient transporters reduces the transport time by 30 seconds. In each of these cases, 

workers speed up when the workload is high. KC and Terwiesch (2012) also find that the 

length of stay for patients in the ICU is influenced by the occupancy level of the unit. 

Their analysis shows that a patient is likely to be discharged early when the occupancy is 

high. 

On the other hand, workers tend to slow down if the system is too congested, 

especially for systems with shared resources. Schultz et al. (1999) find from their 

experiments that the slowest workers in a production line work faster in low-inventory 

situations than in high-inventory situations. The joint effects of speedup and slowdown 

have been shown by a number of empirical studies as well. Armony et al. (2015) study 

detailed patient flow data from a large Israeli hospital and find that the service rate first 

increases and then decreases as the emergency department (ED) occupancy increases. 

Batt and Terwiesch (2012) conduct a detailed econometric analysis of an ED at a major 

U.S. hospital and identify and test for mechanisms that generate speedup and slowdown. 

They find that service time in a hospital ED first increases then decreases with workload. 

Jaeker and Tucker (2013) analyze inpatient data from California acute care hospitals and 

find that the probability of patient discharge increases until the occupancy level increases 

to approximately 85% and decreases with workload exceeding 85% occupancy. Tan and 
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Netessine (2014) analyze a data set from a restaurant chain and show that service speed 

first decreases with the increase in workload, but above a certain workload threshold, 

service speed increases with the further rise in workload. Jaeker and Tucker (2015) show 

from inpatient data of 203 California acute care hospitals that patient length of stay 

initially increases as occupancy increases until a tipping point, when patients are 

discharged early to alleviate congestion. They also find a second tipping point beyond 

which additional occupancy leads to a longer length of stay. These increases and 

decreases in service rate can also be explained using the context of multitasking. KC 

(2013) shows that the total time taken to discharge a given number of patients has a U-

shaped response to the level of physician multitasking. Multitasking initially helps in 

improving productivity but it eventually overwhelms the worker once the level of 

multitasking passes a certain threshold. 

3.2.2. Staffing with Recourse 

Service enterprises in general and nursing in particular have been widely examined by 

researchers studying the problem of staffing with recourse. Hur et al. (2004) formulate a 

mathematical model and heuristics for the real-time schedule adjustment decisions for 

service manager, and they test the proposed procedures in the quick service restaurant 

industry. Mehrotra et al. (2010) develop a methodology to make real-time schedule 

adjustments in call center operations, and they test the model using data from an actual 

call center. The results show that the adjustments provide significant value when the call 

center is understaffed. 
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Nurse staffing with recourse has also been studied. Moz and Pato (2003, 2004, 

2007) and Clark and Walker (2011) study the rerostering problem in the context of a 

public hospital, where modifications to the original schedule are necessary to replace 

nurses unable to work shifts that were previously assigned to them. Bard and Purnomo 

(2005) formulate an integer programming model for reactively scheduling nurses with 

daily adjustments and individual preference consideration. Punnakitikashem et al. (2008) 

develop a two-stage stochastic integer programming model with recourse for nurse 

assignment, in which each patient is assigned to a nurse at the beginning of a shift, with 

the goal of minimizing excess workload and developing balanced workloads for nurses 

while taking new admissions into account. In contrast, our work studies initial staffing 

and real-time adjustments in number of staff. Wright and Bretthauer (2010) study both 

internal recourse approaches (using overtime, float pool nurses, etc.) and external 

recourse approaches (using agency nurses) in combating nurse shortages while 

controlling the number of undesirable shifts. However, our essay incorporates the impact 

of the staffing decisions on the service rate, which is not considered in any of the papers 

listed above. 

3.2.3. Patient-to-Nurse Ratios 

Since the 1999 passage of California Assembly Bill 394 (AB394), which established 

minimum staffing levels for registered nurses in California hospitals, the patient-to-nurse 

(PTN) ratio has received significant attention in the literature. See Spetz (2004) for an 

examination of the early implementation of fixed staffing ratios in acute-care hospitals in 

California and an overview of the debate on the issue. Aiken et al. (2002) analyze the 

association between the PTN ratio and patient mortality, failure-to-rescue among surgical 
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patients, and factors related to nurse retention. Their analysis shows that each additional 

patient per nurse is associated with a 7% increase in patient mortality and 23% increase 

in the odds of nurse burnout. Needleman et al. (2006) study the benefit of increasing 

hospital nurse staffing and find that increasing total nursing hours leads to a decrease in 

patient length-of-stay, adverse outcomes, and patient deaths. Kane et al. (2007b) examine 

the association between nurse staffing and patient outcomes in acute care hospitals and 

find increased staffing to be associated with lower mortality, lower length of stay, and 

decreased odds of adverse medical outcomes. Aiken et al. (2011) show that the effect of 

decreasing workloads by one patient per nurse has virtually no impact on deaths and 

failure-to-rescue in hospitals with poor work environments, but decreases the odds on 

both deaths and failures in hospitals with average and good environments. Cook et al. 

(2012) evaluate the impact of AB394 and find evidence that AB394 had the intended 

effect of decreasing PTN ratio in hospitals, but they do not find the improved PTN ratio 

to be associated with improvements in measured patient safety. Conversely, Cimiotti et al. 

(2012) find significant association between PTN ratio and urinary tract infection and 

surgical site infection. McHugh et al. (2013) examine the relationship between nurse 

staffing and readmission penalties and find that hospitals with higher nurse staffing had 

25 percent lower odds of being penalized compared to otherwise similar hospitals with 

lower staffing. We contribute to this stream of literature by providing valuable insights on 

the optimal workload and staffing levels in service industries and study how the decisions 

change when behavioral phenomena of speedup and slowdown are incorporated.  
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3.3. MODEL 

We incorporate the impact of speedup and slowdown on the multi-period workforce 

staffing problem with recourse. As we noted in Section 3.2, empirical studies have 

demonstrated evidence of speedup and slowdown, but to the best of our knowledge there 

is no existing literature on how to model the effects of speedup and slowdown on service 

rate and incorporate these effects into a staffing decision. In Section 3.3.1, we describe 

functional forms to model speedup and slowdown separately, then combine the two 

functions in a very general way to represent many possible joint effects of speedup and 

slowdown. In Section 3.3.2, we formulate a stylized staffing model, which is an infinite-

horizon stochastic dynamic program for multi-period staffing with recourse. In our 

analysis in Section 3.4 and subsequent numerical studies in Section 3.5, we will use these 

two models together to obtain results and insights on the multi-period staffing problem. A 

summary of notation is given in Appendix B.1 and proofs are presented in Appendix B.3. 

3.3.1. Speedup and Slowdown 

Depending on the operational setting, either speedup or slowdown may be present in 

isolation or they may have joint effects on the service rate. Even when only one effect is 

explicitly present, both effects may actually be present, with one dominating the other. 

For example, speedup due to high workload may unintentionally lead to reduced quality 

requiring correction or rework and causing slowdown, but not at a sufficient level to 

offset the speedup. Of course, if this effect increases sufficiently, the time needed for 

correction or rework may result in slowdown in overall service rate of the system. In 

order to model these joint effects in a very general way, we first model speedup and 
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slowdown separately and then use a convex combination of the two functions to represent 

the joint effects. Denote the workload, or ratio of requests to servers, as 𝑟 ∈ (0, 𝑟̅], where 

𝑟̅ is the maximum allowable ratio. Then, define 

 
(Speedup)     𝛾(𝑟) =

𝜇̅𝑠𝑝

1 + 𝑒−𝜃𝑠𝑝(𝑟−𝑟𝑠𝑝)
, and (3.1) 

 
(Slowdown)     𝜏(𝑟) =

𝜇̅𝑠𝑙

1 + 𝑒𝜃𝑠𝑙(𝑟−𝑟𝑠𝑙)
, (3.2) 

where 𝜇̅𝑠𝑝 and 𝜇̅𝑠𝑙 are scale parameters representing the upper bounds of the service rate 

that a worker can achieve, 𝜃𝑠𝑝 and 𝜃𝑠𝑙  are shape parameters representing the degree of 

speedup and slowdown effects, and 𝑟𝑠𝑝 and 𝑟𝑠𝑙 are location parameters representing the 

positions of the speedup and slowdown curves with respect to the workload (they are the 

levels of workload where a service rate of 𝜇̅𝑠𝑝/2 and 𝜇̅𝑠𝑙/2 are achieved). The joint effect 

of speedup and slowdown is modeled as a convex combination of 𝛾(𝑟) and 𝜏(𝑟), which 

is written as  

 𝜇(𝑟) = 𝛽 ⋅ 𝛾(𝑟) + (1 − 𝛽) ⋅ 𝜏(𝑟) (3.3) 

where 𝛽 ∈ [0,1]. When 𝛽 = 0, only slowdown is present, and when 𝛽 = 1, only speedup 

is present. As workload increases, speedup occurs before slowdown if 𝑟𝑠𝑝 < 𝑟𝑠𝑙  and 

slowdown occurs before speedup if 𝑟𝑠𝑝 > 𝑟𝑠𝑙. 
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Figure 3.3. Modeling the Joint Effects of Speedup and Slowdown Using Logistic 

Functions 

Using (3.3), we can model different relationships between the workload and the 

service rate that have been observed in various empirical studies. Figure 3.3 shows an 

example of 𝛾(𝑟), 𝜏(𝑟), and 𝜇(𝑟) representing an inverse U-shaped relationship between 

the workload and the service rate. For analytical tractability, we assume that 𝜃𝑠𝑝 = 𝜃𝑠𝑙 =

𝜃 and consider the resulting four cases from the 𝜇(𝑟) function: monotonically increasing, 

monotonically decreasing, inverse U-shaped, and U-shaped. Specifically, when the 

impact of one behavioral phenomenon is much greater than that of the other and the joint 

effect mainly reflects the dominant phenomenon, the function may be either 

monotonically increasing or decreasing, even when 𝛽  is neither zero nor one. Figure 

3.1(a) and Figure 3.1(b) show examples of cases in which speedup and slowdown 
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dominate the other phenomenon, respectively. We formally define these two cases, and 

Lemmas 3.1 and 3.2 characterize sufficient conditions for the two cases. 

DEFINITION 3.1. Speedup “dominates” slowdown when 𝜇(𝑟)  is nondecreasing for 

𝑟 ∈ (0, 𝑟̅]. 

DEFINITION 3.2. Slowdown “dominates” speedup when 𝜇(𝑟)  is nonincreasing for 

𝑟 ∈ (0, 𝑟̅]. 

LEMMA 3.1. Suppose 𝜃𝑠𝑝 = 𝜃𝑠𝑙 = 𝜃 and 
(1−𝛽)

𝛽
<

(𝑒𝜃𝑟𝑠𝑙+𝑒𝜃𝑟)
2

𝜇̅𝑠𝑝

 (𝑒𝜃𝑟𝑠𝑝+𝑒𝜃𝑟)
2

𝑒𝜃(𝑟𝑠𝑙−𝑟𝑠𝑝)𝜇̅𝑠𝑙

 for 0 < 𝑟 < 𝑟̅. 

Then 𝜇(𝑟) is monotonically increasing and the impact of speedup dominates that of 

slowdown. 

LEMMA 3.2. Suppose 𝜃𝑠𝑝 = 𝜃𝑠𝑙 = 𝜃 and 
(1−𝛽)

𝛽
>

(𝑒𝜃𝑟𝑠𝑙+𝑒𝜃𝑟)
2

𝜇̅𝑠𝑝

 (𝑒𝜃𝑟𝑠𝑝+𝑒𝜃𝑟)
2

𝑒𝜃(𝑟𝑠𝑙−𝑟𝑠𝑝)𝜇̅𝑠𝑙

 for 0 < 𝑟 < 𝑟̅. 

Then 𝜇(𝑟) is monotonically decreasing and the impact of slowdown dominates that of 

speedup. 

The other two cases arise when neither behavioral phenomenon dominates the 

other. In particular, when 𝜃𝑠𝑝 = 𝜃𝑠𝑙 = 𝜃, we have either inverse U-shaped or U-shaped 

relationships between the workload and the service rate depending on which phenomenon 

occurs first, as shown in Figure 3.2(a) and Figure 3.2(b). We define and present sufficient 

conditions for these two cases.  

DEFINITION 3.3. 𝜇(𝑟) is “inverse U-shaped” if 𝜇(𝑟) is not monotonic and there exists 

𝑟0 such that 𝜇(𝑟) is nondecreasing for 0 < 𝑟 ≤ 𝑟0 and nonincreasing for 𝑟0 ≤ 𝑟 ≤ 𝑟̅. 
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DEFINITION 3.4. 𝜇(𝑟) is “U-shaped” if 𝜇(𝑟) is not monotonic and there exists 𝑟0 such 

that 𝜇(𝑟) is nonincreasing for 0 < 𝑟 ≤ 𝑟0 and nondecreasing for 𝑟0 ≤ 𝑟 ≤ 𝑟̅.  

LEMMA 3.3. If 𝜃𝑠𝑝 = 𝜃𝑠𝑙 = 𝜃  and 𝜇(𝑟)  is not monotonic, 𝜇(𝑟)  is inverse U-shaped 

when 𝑟𝑠𝑝 < 𝑟𝑠𝑙 and U-shaped when 𝑟𝑠𝑝 > 𝑟𝑠𝑙. 

Lemma 3.3 shows that there are four cases to be considered; when 𝑟𝑠𝑝 = 𝑟𝑠𝑙 the 

service rate function is quasilinear, in which case one behavioral effect dominates the 

other (see Definitions 3.1 and 3.2). 

3.3.2. Markov Decision Process Model  

We model the workforce staffing recourse decision as an infinite-horizon discounted 

Markov decision process (MDP) where 𝛼 ∈ (0,1) is the one-shift discount rate. The firm 

makes an initial decision, which is an a priori staffing schedule for each shift based on 

forecasted demand. At each decision epoch (i.e., the beginning of a shift), the state is the 

number of requests in the system. The state space is the set of non-negative integers.  The 

firm’s action is a target workload (i.e., the request-to-worker ratio). Thus, the action 

space is the set of positive reals. Although in practice the number of workers must also be 

an integer, we relax this requirement in the stylized model and are interested in 

understanding the firm’s “ideal” workload. That is, an initial number of workers is 

assigned at the beginning of the planning horizon to each shift and subsequently the 

manager makes real-time schedule adjustments to achieve the ideal workload (ratio) 

based on the number of requests at the beginning of each shift. In particular, if at the 

beginning of a shift the workload is higher than the optimal level, the manager schedules 

additional workers at a premium, for example by calling in on-call workers. Although the 
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wages for these on-call workers are typically higher than those for the regular workers, in 

this case the reduction of future variable costs and backorder costs (associated with the 

number of service requests in the system, and elaborated on below) may outweigh the 

extra immediate costs incurred for these workers. On the other hand, if the unit has too 

many workers scheduled in a given shift, the manager sends some workers home. In this 

case, the firm may still have to pay some proportion of the wages for the workers sent 

home.  

 

Figure 3.4. Timeline of Decisions and Events 

We consider an infinite time horizon with a cyclic arrival pattern consisting of 𝑘 

shifts in each cycle (a cycle might represent a week, for example). Figure 3.4 presents the 

timeline of decisions and events in a cycle. A priori, the firm assigns 𝑧𝑠 workers to work 

in shift 𝑠  for 𝑠 = 1, … , 𝑘  in each cycle. While the realized number of arrivals and 

departures in a given shift can be different from those in a corresponding shift of a 

different cycle, the distributions of arrivals and departures are independent of the cycle 

number. Consequently, 𝑧𝑠  is independent of the cycle number as well. Each worker 

receives a wage of 𝑐𝑤 per shift, and the system incurs a variable cost 𝑐𝑣 per shift for each 
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request in service. If the number of requests exceeds the service capacity of the system 𝑏, 

the excess requests are backlogged and the system incurs a holding cost 𝑐ℎ  per 

backlogged unit per shift. 

At the beginning of shift 𝑠 of cycle 𝑖, the manager observes the number of service 

requests 𝑌𝑖𝑠 and the number of requests that are placed in service (i.e., not backlogged) is 

𝑋𝑖𝑠, which is determined as min{𝑌𝑖𝑠, 𝑏}. The manager decides on the workload, which is 

the ratio of requests in service to workers, denoted 𝑟𝑖𝑠 ∈ (0, 𝑟̅] by adjusting the original 

workforce 𝑧𝑠 as needed. She has an ability to obtain extra workers at the per-worker wage 

of (1 + 𝜓)𝑐𝑤, where 𝜓 ≥ 0 is the on-call premium relative to the regular worker wage. 

She also can send some workers home and recoup a proportion of their wages, denoted 

𝜙 ∈ [0,1]. If 𝜙 = 0, the firm still has to pay the full wage for the workers sent home. If 

𝜙 = 1, the firm is able to recoup the entire wage for the workers sent home. After the 

adjustments are made, the workload for the shift is set at 𝑟𝑖𝑠. The service rate (which is a 

function of 𝑟𝑖𝑠) determines how many requests will depart the system by the end of the 

shift and depends on the presence of speedup and/or slowdown. In order to satisfy the 

Markovian requirement of MDP, we assume an independent and identically distributed 

departure probability 𝜇(𝑟𝑖𝑠) for each request in service. Thus, the number of requests that 

depart the system at the end of a given shift, denoted as 𝐷(𝑋𝑖𝑠, 𝑟𝑖𝑠), follows the binomial 

distribution with 𝑋𝑖𝑠 trials and success probability 𝜇(𝑟𝑖𝑠). This formulation of 𝜇(𝑟𝑖𝑠) as a 

probability requires that the average length of stay to be at least one shift (for industries 

where the average length of stay is shorter than a shift, we can further subdivide the shift 

into intervals of time small enough so that the requests would stay in the system for at 

least one time period on average). Finally, there are new arrivals of requests 𝐴𝑖𝑠, which 
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follows a general distribution with 𝐸[𝐴𝑖𝑠] = 𝜆𝑠 . The number of requests for the 

subsequent shift is the convolution of a new arrival of requests in the shift 𝐴𝑖𝑠  and 

requests still remaining in the system after the previous shift 𝑌𝑖𝑠 − 𝐷(𝑋𝑖𝑠, 𝑟𝑖𝑠).  

Let 𝑉𝑠(𝑦) denote the minimum expected total discounted cost at the beginning of 

shift 𝑠  if 𝑦  requests are in the system. We formulate the following infinite-horizon 

stochastic program, whose optimal objective value will be 𝑉𝑠(𝑦). 

𝑉𝑠(𝑦) = min
rij

𝐸 [∑ 𝛼𝑗−𝑠 (𝑐𝑤𝑧𝑗 + 𝑐𝑣𝑋1𝑗 + 𝑐ℎ(𝑌1𝑗 − 𝑋1𝑗) + (1 + 𝜓)𝑐𝑤 (
𝑋1𝑗

𝑟1𝑗
− 𝑧𝑗)

+𝑘

𝑗=𝑠

− 𝜙𝑐𝑤 (𝑧𝑗 −
𝑋1𝑗

𝑟1𝑗
)

+

) + ∑ ∑ 𝛼(𝑖−1)𝑘+𝑗−𝑠 (𝑐𝑤𝑧𝑗 + 𝑐𝑣𝑋𝑖𝑗 + 𝑐ℎ(𝑌𝑖𝑗 − 𝑋𝑖𝑗)

𝑘

𝑗=1

∞

𝑖=2

+ (1 + 𝜓)𝑐𝑤 (
𝑋𝑖𝑗

𝑟𝑖𝑗
− 𝑧𝑗)

+

− 𝜙𝑐𝑤 (𝑧𝑗 −
𝑋𝑖𝑗

𝑟𝑖𝑗
)

+

)] 

 

 

(3.4) 

subject to: 

 𝑌1𝑠 = 𝑦 (3.5) 

 𝑌𝑖1 = 𝑌(𝑖−1)𝑘 + 𝐴(𝑖−1)𝑘 − 𝐷(𝑋(𝑖−1)𝑘, 𝑟(𝑖−1)𝑘)   for 𝑖 = 2, 3, … (3.6) 

 𝑌𝑖𝑗 = 𝑌𝑖(𝑗−1) + 𝐴𝑖(𝑗−1) − 𝐷(𝑋𝑖(𝑗−1), 𝑟𝑖(𝑗−1))   for 𝑖 = 1, 2, … ; 𝑗 = 2, 3, … , 𝑘 (3.7) 

 𝑋𝑖𝑗 = min{𝑌𝑖𝑗, 𝑏}  for 𝑖 = 1, 2, … ; 𝑗 = 1, 2, … , 𝑘 (3.8) 

 𝑟𝑖𝑗 ∈ (0, 𝑟̅] for 𝑖 = 1, 2, … ; 𝑗 = 1, 2, … , 𝑘 (3.9) 

In the above formulation, the decision variables are 𝑟𝑖𝑗, the ratio of requests to servers in 

shift 𝑗 of the 𝑖th cycle. Equivalently, we can write 𝑉𝑠(𝑦) recursively as the solution to a 

set of 𝑘 Bellman’s equations as follows. Note that the 𝑖 subscript is eliminated because 
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decisions are independent of past cycles and only dependent on the current number of 

requests 𝑌 (i.e., the model has the Markov property). 

 𝑉𝑠(𝑦) = min
𝑟∈(0,𝑟̅]

{𝑣𝑠(𝑦, 𝑟)}, (3.10) 

where 

 
𝑣𝑠(𝑦, 𝑟) = 𝑐𝑤𝑧𝑠 + 𝑐𝑣 min{𝑦, 𝑏} + 𝑐ℎ(𝑦 − 𝑏)+ + (1 + 𝜓)𝑐𝑤 (

min{𝑦, 𝑏}

𝑟
− 𝑧𝑠)

+

− 𝜙𝑐𝑤 (𝑧𝑠 −
min{𝑦, 𝑏}

𝑟
)

+

+ 𝛼𝐸[𝑉𝑠++(𝑦 + 𝐴𝑠 − 𝐷(min{𝑦, 𝑏} , 𝑟))] 
(3.11) 

 𝑠++ = {
𝑠 + 1   if 𝑠 < 𝑘
1          if 𝑠 = 𝑘

 (3.12) 

3.4. ANALYSIS 

In this section, we develop analytical insights into optimal staffing policies for firms 

when speedup and slowdown are taken into account. Specifically, Section 3.4.1 presents 

closed form solutions for the case when speedup dominates slowdown or the case of a U-

shaped curve when 𝜇(𝑟̅) ≥ 𝜇(𝑟) for all 𝑟 ∈ (0, 𝑟̅]. Section 3.4.2 presents results for the 

case where slowdown dominates speedup or the case of an inverse U-shape curve. While 

closed form solutions are not possible for the cases analyzed in Section 3.4.2, we are able 

to show that the optimal workload will always be in the slowdown region. Section 3.4.3 

allows any of the four cases (speedup dominates, slowdown dominates, U-shape, and 

inverse U-shape) while making additional assumptions on the problem structure. In this 

case, we are able to show that the optimal workload is independent of customer census. 

In Section 3.5, we present numerical experiments to further analyze optimal staffing 

decisions for the cases where there is not a closed form solution.  
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3.4.1. “Speedup Dominates” and “U-Shape” Cases 

We first consider cases where the speedup effect dominates the slowdown effect (Figure 

3.1a) or slowdown occurs before speedup (U-Shape, Figure 3.2b) as defined in Section 

3.3.1. We present the optimal staffing policy for both cases.  

PROPOSITION 3.1. When speedup dominates slowdown, or when 𝜇(𝑟) is U-shaped and 

𝜇(𝑟̅) ≥ 𝜇(𝑟) for all 𝑟 ∈ (0, 𝑟̅], the optimal decision is to always keep the workload at 𝑟̅ 

and staff the minimum number of workers allowed. The firm’s decision is independent of 

the number of requests in the system 𝑦. 

In both cases, the firm would maximize the speedup effect and workers’ 

productivity by increasing the workload as much as possible, resulting in minimum 

staffing costs. For industries in which there are limits on how much workload can be 

assigned to workers (e.g., for safety reasons), Proposition 3.1 suggests that a fixed 

workload policy (at 𝑟̅) is optimal for the speedup-dominates case, independent of the 

amount of work present in the system. For the U-shaped case, a fixed workload policy is 

optimal if the right tail of the U-shaped case is sufficiently high such that 𝜇(𝑟̅) ≥ 𝜇(𝑟) 

for all 𝑟 ∈ (0, 𝑟̅]. When 𝜇(𝑟̅) < 𝜇(𝑟), the optimal workload is either 𝑟̅ or the optimal 

solution for the region of the U-shape curve in which slowdown dominates speedup, 

which we discuss further in the next subsection.   

3.4.2. “Slowdown Dominates” and “Inverse U-Shape” Cases 

In this subsection, we are interested in cases where the impact of slowdown dominates 

that of speedup (Figure 3.1b) or speedup occurs before slowdown (Inverse U-Shape, 

Figure 3.2a). Note that in both cases there is a level of workload 𝑟0 < 𝑟̅ that maximizes 
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the service rate. For workloads higher than 𝑟0 , the service rate decreases with the 

workload. Furthermore, for the “Inverse U-shape” case, the service rate increases with 

the workload for workload lower than 𝑟0. We observe that for both cases, the optimal 

workload would always be at least the workload level that maximizes the service rate. 

The following proposition formalizes the above discussion. 

PROPOSITION 3.2. Let 𝑟0 ≤ 𝑟̅ be a global maximizer for 𝜇(𝑟𝑠). Then when slowdown 

dominates speedup or 𝜇(𝑟) is inverse U-shape, the optimal workload 𝑟𝑠
∗(𝑦) ≥ 𝑟0. 

Later in the chapter, we show examples both analytically and numerically where 

𝑟𝑠
∗ > 𝑟0 and thus the optimal workload does not maximize the departure rate. It follows 

from Proposition 3.2 that the optimal workload would always be in a slowdown region, 

where the service rate decreases with the workload.  For every level of workload in a 

speedup region, where the service rate increases with the workload, the firm can find a 

workload level in a slowdown region that achieves the same or better service rate with 

fewer workers.  

3.4.3. Shift-by-Shift Staffing with No Capacity Constraint 

While we know from Proposition 3.2 that the optimal workload will always be in a 

slowdown region, fully characterizing the optimal solution beyond Proposition 3.2 is not 

possible, and in Section 3.5 we provide a numerical analysis. In this subsection we gain 

more insights on the optimal staffing decision by analyzing a special case in which extra 

on-call workers do not require any premium (𝜓 = 0) and the firm can recoup the entire 

wage for workers sent home (𝜙 = 1). We call this case “shift-by-shift staffing” since this 

is equivalent to a situation in which the manager has the ability to assign workers at the 
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beginning of every shift without any penalty and thus the predetermined number of 

workers is irrelevant. We also assume that there is no capacity constraint. 

Under these simplifying assumptions, the optimality equation is given by 

 𝑉𝑠(𝑦) = min
𝑟∈(0,𝑟̅]

{𝑣𝑠(𝑦, 𝑟)}, (3.13) 

where 

 𝑣𝑠(𝑦, 𝑟) = 𝑐𝑤

𝑦

𝑟
+ 𝑐𝑣𝑦 + 𝛼𝐸[𝑉𝑠++(𝑦 + 𝐴𝑠 − 𝐷(𝑦, 𝑟))] (3.14) 

Denote by 𝑟𝑠
∗(𝑦) the optimal workload to assign to each worker in shift 𝑠 when there are 

𝑦  requests in the system. In other words, 𝑟𝑠
∗(𝑦) = arg min𝑟∈(0,𝑟̅]{𝑣𝑠(𝑦, 𝑟)} . In the 

following, we show that in this special case, the optimal workload does not change with 𝑦. 

That is, there is a ratio (𝑟𝑠
∗) that is optimal independent of the number of customer 

requests and at the start of each shift, staffing is set to achieve this ratio. 

PROPOSITION 3.3. Suppose that 𝜓 = 0 , 𝜙 = 1 , and 𝑏 = ∞ . Then for each 𝑠 ∈

{1, 2, … , 𝑘}, there exists ratio 𝑟𝑠
∗ such that 𝑟𝑠

∗(𝑦) = 𝑟𝑠
∗ ∀𝑦. 

One consequence of Proposition 3.3 is that 𝑉𝑠(𝑦) is a linear function. Knowing 

this, we can solve for an explicit expression for 𝑉𝑠(𝑦). To do so, note that there must exist 

reals 𝜉𝑠, 𝜂𝑠 such that 𝑉𝑠(𝑦) = 𝜉𝑠𝑦 + 𝜂𝑠. Using the definition of 𝑉𝑠(𝑦), we obtain 

 
𝜉𝑠𝑦 + 𝜂𝑠 = (

𝑐𝑤

𝑟𝑠
∗

+ 𝑐𝑣) 𝑦 + 𝛼 (𝜉𝑠++ (𝑦(1 − 𝜇(𝑟𝑠
∗))) + 𝜉𝑠++𝜆𝑠 + 𝜂𝑠), (3.15) 
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from which we can obtain a system of 2𝑘 linear equations that can be solved for 

𝜉𝑠, 𝜂𝑠, 𝑠 ∈ {1, 2, … , 𝑘}.  For example, when 𝑘 = 1 , we can solve to obtain 𝜉1 =

𝑐𝑤
𝑟1

∗ +𝑐𝑣

1−𝛼(1−𝜇(𝑟1
∗))

 and 𝜂1 =
𝛼

1−𝛼
𝜆1𝜉1. Therefore, we conclude that 

 

𝑉1(𝑦) =

𝑐𝑤

𝑟1
∗ + 𝑐𝑣

1 − 𝛼(1 − 𝜇(𝑟1
∗))

(𝑦 +
𝛼

1 − 𝛼
𝜆1). (3.16) 

Because 𝑉1(𝑦)  is the minimum expected total discounted cost, 𝑟1
∗  must minimize the 

expression 

𝑐𝑤
𝑟1

∗ +𝑐𝑣

1−𝛼(1−𝜇(𝑟1
∗))

. When slowdown dominates speedup or 𝜇(𝑟) is inverse U-shape, 

we can see that this is a case in which 𝑟1
∗ is strictly greater than 𝑟0 that maximizes 𝜇(𝑟) as 

mentioned in Section 3.4.2. We also note that when speedup dominates slowdown or 

𝜇(𝑟)  is U-shape and 𝜇(𝑟̅) ≥ 𝜇(𝑟)  for 𝑟 > 0 , Proposition 3.3 is consistent with 

Proposition 3.1 and the firm would always staff the minimum number of workers allowed. 

For 𝑘 > 1, it is more complicated to solve for the optimal workload and thus we defer to 

the numerical studies. 

The optimal staffing decision depends on the properties of 𝜇(𝑟). We now show 

that under a reasonable assumption on the shape of the function 𝜇(𝑟), the model has a 

global minimum in the domain under consideration, which allows us to use the first-order 

condition to solve directly for the optimal workload. We note that the slowdown and 

inverse U-shaped cases of our model meet this more general criteria. 

PROPOSITION 3.4. If 𝜇(𝑟) is quasiconcave with global maxmimum 𝑟0 and there exists 

𝑟1 for which 𝜇(𝑟) is concave for 𝑟 ≤ 𝑟1 and convex for 𝑟 ≥ 𝑟1, there is a global minimum 

𝑟𝑠
∗ ∈ (0, 𝑟̅] for 𝑣𝑠(𝑦, 𝑟).  
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For cases not covered by Proposition 3.1 or shift-by-shift staffing, the optimal 

staffing decision in general is dependent on the number of requests in the system and 

difficult to characterize analytically. In the next section, we perform numerical 

experiments to gain more insights on optimal staffing policies for those cases. 

3.5. NUMERICAL EXPERIMENTS 

In this section, we numerically analyze the model presented in Section 3.3 for cases 

where a closed form solution is not available. Specifically, we numerically study the 

optimal staffing decision beyond Proposition 3.2 for cases when slowdown dominates or 

𝜇(𝑟) is inverse U-shaped. We also compare the performance of several heuristics that are 

much easier to implement to that of the optimal policy. Finally, we investigate the 

importance of having the optimal advance schedule when employing different staffing 

policies. For sensitivity analysis, we test a wide range of parameter values to examine the 

robustness of the optimal policy. In particular, we set worker costs per shift to $400 and 

consider variable costs of service ranging from $100 to $700 per shift, backorder costs 

ranging from 1/20 to 2 times variable cost, wage premiums of 25 to 100 percent, 

recaptured wages ranging from 0 to 80 percent, and a discount rate of 0.99. We consider 

a cycle size of 1 or 2 with arrivals per shift 𝜆=15 or {𝜆1, 𝜆2}={18,12} or {25,5}.  In each 

of the arrival scenarios, the average number of arrivals per shift is 15 service requests. 

The theoretically achievable service rate (in the absence of speedup or slowdown effects) 

is 1/6, meaning that when speedup and slowdown are incorporated, the average service 

time is at least 6 shifts, resulting in average occupancy of at least 90, compared to 

capacities of 120, 130, or 140 (although since service rates change from shift to shift 
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according to the workload, the actual average occupancy may be substantially above 90). 

A complete list of values is shown in Table 3.3.  

Parameter Values 

𝑐𝑤  400 

𝑐𝑣  100, 300, 500, 700 

𝑐ℎ  0.05𝑐𝑣, 0.2𝑐𝑣, 𝑐𝑣, 2𝑐𝑣 

𝜓  0.25, 0.5, 1 

𝜙  0, 0.4, 0.8 

𝑏  120, 130, 140 

𝛼  0.99 

𝜇̅𝑠𝑝, 𝜇̅𝑠𝑙 1/6 

𝑟𝑠𝑝  3 

𝑟𝑠𝑙  7 

𝑟̅  8 

𝜆 (for 𝑘 = 1)  15 

{𝜆1, 𝜆2}  {18,12}, {25,5} 

Table 3.3. Experimental Design 

3.5.1. Optimal Recourse Actions 

We first study the structure of the optimal recourse action. Throughout this section, we 

assume the firm uses the optimal number of staff in the advance schedule with respect to 

recourse actions. (We study the effect of the advance scheduling decision in Section 

3.5.3). When slowdown dominates speedup or 𝜇(𝑟) is inverse U-shape, Proposition 3.3 

tells us that the optimal workload is independent of 𝑦 if 𝜓 = 0, 𝜙 = 1, and 𝑏 = ∞. When 

these conditions are not met, the optimal staffing policy is dynamic and depends on the 

number of requests in the system. Figure 3.5 illustrates the optimal recourse policy for a 

sample set of parameters which is generally representative of our experiments. At the 

beginning of a shift, there is an initial staffing level 𝑧 and a realized number of requests 𝑦. 

The line in region 2 represents the resulting workload if no adjustments are made to the 
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workforce for the current shift. Note that if no recourse is taken anywhere, the resulting 

graph (which would no longer be optimal) would be an extension of the line in region 2 

to regions 1 and 3. However, this would result in a very low (suboptimal) workload in 

region 1 or a very high (suboptimal) workload in region 3. Consistent with Table 3.1, we 

thus divide the optimal decision into three different regions based on the number of 

requests relative to the established schedule: overstaffed (region 1), adequately staffed 

(region 2), and understaffed (region 3). We call the point separating regions 1 and 2 the 

“overstaffing threshold” and the point separating regions 2 and 3 “understaffing 

threshold”. In region 1, some workers are sent home to maintain the optimal workload. In 

region 2, no recourse action is taken—staffing is held constant; the benefit of maximizing 

the worker productivity is outweighed by the cost of wage changing capacity (in the form 

of wage premiums or unrecovered wages) and the workload grows linearly in the number 

of requests. Finally in region 3, additional workers are obtained to keep the workload 

down to the optimal level. Thus, to achieve the optimal workload in region 1, workers 

must be sent home, while to achieve the optimal workload in region 3, workers must be 

added. 
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Figure 3.5. Optimal Staffing Policy (𝒄𝒗 = 𝟑𝟎𝟎, 𝝓 = 𝟎. 𝟒, 𝝍 = 𝟎. 𝟓, 𝒄𝒉 = 𝒄𝒗, 𝒃 = 𝟏𝟐𝟎) 

We observe that if the number of requests at the beginning of the period is in 

region 1, the optimal workload is nearly constant (although slightly non-increasing) in the 

number of requests. Thus, workers are sent home to maintain a nearly constant ratio of 

requests per worker. If the number of requests is in region 2, no workers are added or 

subtracted to the existing schedule and so the workload grows linearly in the number of 

requests. Interestingly, in region 3 the optimal workload (requests per worker) is not 

approximately constant (as in region 1), but decreases as the number of requests in the 

system increases, even though staffing to a lower workload requires high utilization of 

expensive on-call workers. This is because the benefit provided by additional workers 

obtained when the number of requests is very high is twofold, and this benefit is high 

enough to incentivize the firm to increase staffing in the current shift instead of waiting to 

add staff in future shifts. First, as intuition suggests, the additional staff increase the 

throughput of the system. In addition, and perhaps more subtly, their presence results in 

lower workload assigned to each worker, thereby reducing the degree of slowdown 



www.manaraa.com

 

67 

 

experienced by each worker. Recall that Proposition 3.2 tells us that for the cases of 

slowdown dominates or inverse U-shape, the optimal workload will always be in a 

slowdown region, where the service rate decreases with the workload. As the number of 

requests increases, slowdown becomes ever more costly because with slowdown, fewer 

requests will depart, resulting in continued congestion in future time periods. To avoid 

this propagation of congestion, the firm should employ even more workers in the current 

shift, which explains the decreasing optimal workload in region 3. The decrease in 

optimal workload becomes even steeper once the number of requests is greater than the 

capacity of the system (shown as a dotted line in Figure 3.5). Because backlogged 

requests incur costs but cannot be processed until admitted into service, the firm benefits 

from aggressively staffing to reduce the number of requests in the system below capacity 

and preventing propagation of backlogs into future time periods. 

3.5.1.1. Sensitivity Analysis 

We perform sensitivity analysis to examine the behavior of the optimal policy in response 

to changes in the system parameters. Figure 3.6 compares the optimal recourse policies 

when 𝜙 = 0, 0.4, and 0.8. We observe that even when 𝜙 = 0 (meaning the firm does not 

recoup any wage for the workers sent home), it is still optimal for the firm to send 

workers home to keep the workload high enough to achieve peak productivity from 

workers on duty. Region 1 becomes wider and the optimal workload in region 1 increases 

as 𝜙 increases. Because the firm recoups a larger portion of the wages for the workers 

sent home for higher values of 𝜙, the firm is more willing to send workers home for a 

given number of requests in the system. Similarly, Figure 3.7 shows that as 𝜓 increases, 

the optimal workload in region 3 increases and the understaffing threshold increases to 
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larger 𝑦 value. From Proposition 3.3 we know that for 𝜙 = 1, 𝜓 = 0, and no capacity 

constraint, the optimal workload is constant. In Figure 3.6 and Figure 3.7, we can see that 

the workload indeed converges to a horizontal line as we approach those values. 

 

 

Figure 3.6. Optimal Staffing Policy for Various 𝝓 Values (𝒄𝒗 = 𝟑𝟎𝟎, 𝝍 = 𝟎. 𝟓, 

𝒄𝒉 = 𝒄𝒗, 𝒃 = 𝟏𝟐𝟎) 

 

Figure 3.7. Optimal Staffing Policy for Various 𝝍 Values (𝒄𝒗 = 𝟑𝟎𝟎, 𝝓 = 𝟎. 𝟒, 

𝒄𝒉 = 𝒄𝒗, 𝒃 = 𝟏𝟐𝟎) 
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Figure 3.8. Optimal Staffing Policy for Various 𝒄𝒗 Values (𝝓 = 𝟎. 𝟒, 𝝍 = 𝟎. 𝟓, 

𝒄𝒉 = 𝒄𝒗, 𝒃 = 𝟏𝟐𝟎) 

Figure 3.8 shows that under an optimal policy the firm staffs more aggressively 

and the workload decreases in the variable cost per request 𝑐𝑣. The number of workers 

sent home is greatest for low values of 𝑐𝑣 while the number of on-call workers utilized is 

greatest for large values of 𝑐𝑣 . This is because the cost of staffing is more easily 

outweighed by the future expected variable costs when 𝑐𝑣  is larger.  Thus when 𝑐𝑣  is 

larger, the firm would staff more workers to process more requests in the current period, 

either by sending fewer workers home (in region 1) or bring in more on-call workers (in 

region 3).  

Figure 3.9 shows that the firm’s policy on on-call workers changes drastically 

with changes in holding cost per backlogged request. As the holding cost per request 

becomes more expensive, the firm becomes more aggressive in hiring on-call workers to 

reduce the number of requests below capacity and avoid backlogs in future time periods 

(see the steep decrease in region 3 when 𝑐ℎ = 𝑐𝑣 or 𝑐ℎ = 2𝑐𝑣). However, when holding 
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cost is extremely low compared to the variable cost, the optimal workload starts to 

increase when the system is over capacity as the firm slows its hiring of on-call workers 

once the system is full. In part, this phenomenon is due to the fact that while hiring extra 

workers mitigates slowdown, backlogged work cannot be placed into service, no matter 

how many additional workers are obtained, and so the benefit of extra on-call workers 

accrues only to future periods (by increasing the departure of existing requests). Once the 

system is full, it is more cost-effective for the firm to reduce its current-period cost by 

bringing on fewer on-call workers, which increases the workload (note that workload is 

the number of requests in service per worker; the backlogged requests are not counted). 

Because there is a reasonably high probability that the system would stay full for the 

foreseeable future, it is optimal for the firm to enjoy savings from a decrease in the 

number of on-call workers while incurring very low holding costs rather than trying to 

reduce the number of requests as quickly as possible. 

 

Figure 3.9. Optimal Staffing Policy for Various 𝒄𝒉 Values (𝒄𝒗 = 𝟑𝟎𝟎, 𝝓 = 𝟎. 𝟒, 

𝝍 = 𝟎. 𝟓, 𝒃 = 𝟏𝟐𝟎) 
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Figure 3.10. Optimal Staffing Policy when Arrivals are Cyclic  

(𝒄𝒗 = 𝟑𝟎𝟎, 𝝓 = 𝟎. 𝟒, 𝝍 = 𝟎. 𝟓, 𝒄𝒉 = 𝒄𝒗, 𝒃 = 𝟏𝟐𝟎) 

3.5.1.2. Cyclic Arrivals (𝒌 > 𝟏) 

The characteristics of the optimal policy remain similar to the non-cyclic case when 

𝑘 > 1 and arrivals are cyclic. Figure 3.10 presents the optimal policies for two shifts in a 

cycle (𝑘 = 2) and {𝜆1, 𝜆2} = {25,5}. The shape of the optimal policy for each shift is 

almost identical to that under single arrival pattern with corresponding 𝜆=15. We remind 

the reader that in this section we assumed the firm uses an optimal advance schedule: in 

our experiments with cyclic arrivals, we find that the main difference in staffing for the 

two shifts come from the advance schedule instead of the recourse actions, which also 

explains why 𝑟1 and 𝑟2 have essentially identical shapes but with 𝑟2 shifted to the right to 

account for the different advance schedule. The primary difference is that the 𝜆1 = 25 

shift anticipates the current period’s high demand compared to the capacity while 𝜆2 = 5 

shift anticipates lower demand and responds accordingly. Consequently, the behavior of 

the optimal policy with respect to changes in system parameters discussed in the previous 
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subsection still apply when arrivals are cyclic. In Section 3.5.2, we exploit this similarity 

with the non-cyclic case to develop a “one-step look-ahead” heuristic. 

3.5.2. Comparison with Different Heuristics 

While the optimal recourse policy guarantees the best performance, it may not be 

practical to implement because of the difficulty in obtaining the exact solution. We now 

compare the performance of various heuristics that are easier to implement than the 

optimal policy. We assume the firm uses the optimal advance schedule, which may be 

different for each policy (we study the importance of an optimal advance schedule in 

Section 3.5.3), and only compare the performances of different recourse actions. First, we 

test the performance of the single-ratio policy. For this policy, the chosen workload does 

not depend on the number of requests in the system. When arrivals are cyclic, we assume 

that the firm employs the same ratio throughout the cycle to keep the workload at a 

constant level. Second, we test the performance of three myopic policies: single-shift 

with zero terminal cost, single-shift with non-wage terminal cost, and two-shift with zero 

terminal cost (after second shift). Single-shift myopic policy with zero terminal cost 

looks only at the cost of the current shift and thus always fix the workload at 𝑟̅. Single-

shift myopic policy with non-wage terminal cost treats every shift as if it is last shift of 

the finite horizon and the firm incurs terminal cost for each request remaining at the end. 

Two-shift myopic policy with zero terminal cost treats every shift as if it is second-to-last 

shift of the finite horizon with zero terminal cost after the last shift. We present the 

results for two-shift myopic policy with zero terminal cost in the figures because it is the 

best-performing myopic policy. Third, we test the “one-step look-ahead” policy 

implemented on a rolling horizon, for which the firm minimizes the expected total 
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discounted cost assuming it will revert back to the single-ratio policy starting next shift. 

The one-step look-ahead policy is equivalent to applying one step of the policy 

improvement algorithm starting from the single-ratio policy.  

 

Figure 3.11. Possible Cost Savings by Using the Optimal Policy over Other 

Heuristics for the Non-Cyclic Case 

(𝒄𝒗 = 𝟑𝟎𝟎, 𝝓 = 𝟎. 𝟒, 𝝍 = 𝟎. 𝟓, 𝒄𝒉 = 𝒄𝒗, 𝒃 = 𝟏𝟐𝟎) 

 

Figure 3.12. Possible Cost Savings by Using the Optimal Policy over Other 

Heuristics for the Cyclic Case 

(𝒄𝒗 = 𝟑𝟎𝟎, 𝝓 = 𝟎. 𝟒, 𝝍 = 𝟎. 𝟓, 𝒄𝒉 = 𝒄𝒗, 𝒃 = 𝟏𝟐𝟎, 𝝀𝟏 = 𝟐𝟓, 𝝀𝟐 = 𝟓) 
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Figure 3.11 and Figure 3.12 illustrate the percent improvement the firm can 

experience by employing the optimal policy over the three heuristics listed above when 

arrivals are non-cyclic (𝑘 = 1) and cyclic (𝑘 = 2), respectively. Note that the one-step 

policy curve is at a cost savings very close to zero and therefore barely visible in Figure 

3.11 and Figure 3.12. To compute the expected cost, we needed an initial census 

distribution, which we computed assuming the firm currently uses a single-ratio policy. 

The horizontal axis represents the various fixed workloads that the firm can use for its 

current single-ratio policy while the vertical axis represents the percent improvement the 

firm experiences in costs. Because we assume the single-ratio policy to be the current 

policy, our comparison provides a built-in advantage to the single-ratio recourse policy. 

In spite of this, the firm can still improve its costs substantially by switching to the 

optimal recourse policy unless its current single-ratio recourse policy uses a ratio very 

close to 5.5. We note that even determining the best single-ratio policy requires 

accounting for speedup or slowdown. Since we already know that 𝑟𝑠
∗(𝑦) ≥ 𝑟0  from 

Proposition 3.2 for the cases of slowdown or inverse U-shape, there is a chance that the 

firm’s conjectured ratio for the single-ratio policy would be close to optimal if the firm 

has sufficient knowledge on the effects of speedup and slowdown on 𝜇(𝑟)  of its 

employees. On the other hand, there are substantial negative cost consequences if a firm 

selects an inappropriate ratio for the single-ratio policy—for example, the optimal policy 

has as much as 12% lower cost than a single ratio policy of 4.0.  

The myopic policy performs reasonably well when 𝜙 is small or 𝜓 is large, but 

the performance deteriorates as 𝜙  increases or 𝜓  decreases. This observation can be 

explained by the fact that when 𝜙 is small or 𝜓 is large, it is much less likely for the firm 
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to take any recourse actions for both the myopic and the optimal policies. Thus, the 

myopic policy resembles the optimal policy much more than it would otherwise. As 𝜙 

increases or 𝜓 decreases, the firm now has extra incentives to take recourse actions in 

addition to improvement in worker productivity, and consequently the performance of the 

myopic policy suffers.  

Figure 3.11 and Figure 3.12 also clearly demonstrate that the one-step look-ahead 

recourse policy (barely visible in the graphs with values very close to zero) is a potential 

substitute for the optimal policy. In our numerical experiments, the difference between 

the performances of the optimal and the one-step policies was less than 1% for all system 

parameter values. Since the one-step policy greatly reduces the solution complexity of the 

MDP model, it is an attractive candidate as a recourse policy for firms to enjoy “near-

optimal” performance without extensive computational effort. The exceptional 

performance of the one-step policy shows that consideration of just a few shifts into the 

future can be acceptable in the presence of discounting (recall that we use 𝛼 = 0.99). 

This observation coincides with the fact that the optimal policy under cyclic arrivals is 

very similar to a combination of 𝑘 different optimal policies with varying 𝜆 values under 

single arrival pattern. Considering the infinite-horizon problem with 𝑘 shifts in each cycle 

as multiple problems with 𝑘 different 𝜆 values can still lead to adequate performance. On 

the other hand, the difference in performance between the myopic and the one-step 

policies emphasizes the importance for firms to consider future implications, even for a 

few shifts, of their actions taken in the current period. 
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3.5.3. Sensitivity to a Suboptimal Advance Schedule 

The results of the numerical experiments from Sections 3.5.1 and 3.5.2 are based on an 

optimal advance schedule, which is of course the best case in practice. Therefore, we 

examine the consequences of suboptimal advance scheduling when various recourse 

actions are available to compensate. Figure 3.13 shows the percent increase over the 

optimal cost for a range of advance schedule decisions when optimal recourse actions are 

taken. We see that as long as the advance schedule is relatively close to the optimal 

schedule, the subsequent optimal recourse actions can compensate for most of the cost 

incurred by suboptimal advance scheduling. As expected (but not shown on the figure), 

higher values of 𝜙 increase the ability of recourse actions to offset a suboptimal advance 

schedule. Similarly, as 𝜓 decreases the firm gains more ability to correct its mistake in 

the advance schedule due to lower cost of utilizing on-call workers. Thus, optimal 

advance scheduling is less important as 𝜙  increases or 𝜓  decreases (i.e., as recourse 

becomes less expensive). Furthermore, the impact of a suboptimal advance schedule 

decreases as 𝑐𝑣 increases because wage costs represent relatively smaller portion of the 

total costs when 𝑐𝑣 is high, and hence recourse actions appear less expensive. 

Figure 3.14 compares the single-ratio policy and the one-step policy to the 

optimal policy for ranges of initially scheduled staff 𝑧. For the most part, the performance 

of the single-ratio policy does not depend on the initial staffing level 𝑧. Higher 𝑧 values 

perform somewhat better for lower ratios because they reduce the need for on-call 

workers to meet the requirements of a low workload per worker. On the other hand, a 

firm with a high single-ratio policy prefers lower 𝑧 values to minimize the number of 
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workers to send home. Figure 3.14 shows that the one-step policy performs very well 

even when the advance schedule is not optimal. 

   

Figure 3.13. Cost Savings Achieved by Using the Optimal 𝒛 Over Other Values 

(𝒄𝒗 = 𝟑𝟎𝟎, 𝝓 = 𝟎. 𝟒, 𝝍 = 𝟎. 𝟓, 𝒄𝒉 = 𝒄𝒗, 𝒃 = 𝟏𝟐𝟎) 

   

Figure 3.14. Performance of the Single-Ratio and the One-Step Policies for Different 

𝒛 Values 

(𝒄𝒗 = 𝟑𝟎𝟎, 𝝓 = 𝟎. 𝟒, 𝝍 = 𝟎. 𝟓, 𝒄𝒉 = 𝒄𝒗, 𝒃 = 𝟏𝟐𝟎) 
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It is worth noting that the impact of the firm’s decision from the advance schedule 

is very much related to the effectiveness of single-ratio policy. If the firm has a good 

understanding of the productivity of its employees with respect to workload and therefore 

is able to set a reasonable ratio for its single-ratio policy, it can use the same knowledge 

to determine the range of 𝑧 whose performances are close to that of the optimal advance 

schedule. This observation again underscores the importance of incorporating the 

workers’ tendency to speedup or slowdown in staffing. There is an opportunity for firms 

to understand the implications of their staffing decisions on the productivity of their 

employees in order to avoid an inferior advance schedule that cannot be rectified even 

with optimal recourse actions.  

  

Figure 3.15. Cost Savings Achieved by Using Optimal 𝒛𝟏 over Other Values for 

Different 𝒛𝟐 Values in the Cyclic Case 

(𝒄𝒗 = 𝟑𝟎𝟎, 𝝓 = 𝟎. 𝟒, 𝝍 = 𝟎. 𝟓, 𝒄𝒉 = 𝒄𝒗, 𝒃 = 𝟏𝟐𝟎, 𝝀𝟏 = 𝟐𝟓, 𝝀𝟐 = 𝟓) 

We close this section by observing that when arrivals are cyclic, the results are 

very similar to those of the non-cyclic case. Figure 3.15 shows the percent increase over 

the optimal cost for a range of 𝑧1 values when optimal recourse actions are taken in three 
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different scenarios of 𝑧2 (𝑧2 = 𝑧2
∗, 𝑧2 = 𝑧2

∗ − 2, and 𝑧2 = 𝑧2
∗ + 2). We observe that the 

firm can perform very well through the optimal recourse actions even when 𝑧1 and 𝑧2 

deviate from the optimal values. 

3.6. CONCLUSION AND FUTURE RESEARCH 

Recent empirical studies of service systems have shown that servers employ a changing 

service rate depending on the workload at any given time. In this chapter, we modeled 

speedup and slowdown separately and used a convex combination of the two functions to 

represent many possible joint effects of these behavioral phenomena. We then 

incorporated the impact of speedup and slowdown into workforce staffing problem with 

recourse through the model. We showed that the optimal workload is independent of the 

number of customer requests under certain conditions and characterized the optimal 

dynamic recourse policy when these conditions are not met. When the optimal policy is 

dynamic, we showed that the workers’ tendency to slow down causes the firm to 

aggressively use on-call workers even at a high premium. Similarly, the workers’ 

tendency to speed up can incentivize the firm to send workers home even when it does 

not recoup any wages for unworked time. When the arrivals for customer requests are 

cyclic, the optimal policy for each shift has essentially identical shapes but with a 

different advance schedule. Exploiting this result, we developed a one-step look-ahead 

heuristic that greatly reduces the solution complexity of the MDP model and showed that 

it performs almost as well as the optimal recourse policy.    

While our model for speedup and slowdown is able to represent many possible 

joint effects, we acknowledge that speedup may not be sustainable over extended periods 
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of time and slowdown may exacerbate over long periods of time. Consequently, a firm 

may experience changes in the degree of the joint effects over time even when the 

workload is maintained at the constant level. The consideration of this additional time 

dimension for behavioral phenomena could be an attractive direction for future research. 
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CHAPTER 4 

THE PATIENT PATIENT: THE PERFORMANCE OF TRADITIONAL VERSUS 

OPEN-ACCESS SCHEDULING POLICIES 

Abstract 

We compare traditional and open-access scheduling policies for outpatient medical 

practices in terms of the number of patients served and financial performance. Under a 

traditional scheduling policy, a patient schedules an appointment in advance and there is 

a significant possibility of patient no-shows. In response, doctors overbook patients to 

reduce idle time created by no-shows. Under an open-access scheduling policy, all 

appointments are scheduled the day of the appointment, thereby eliminating patient no-

shows but creating more randomness in the daily number of appointments. In contrast to 

earlier works, we consider the optimal average number of patients served and find that 

while the traditional policy may be more profitable by providing doctors more control 

over their schedule and ability to limit overtime, the open-access policy may lead doctors 

to serve a greater number of patients.  

4.1. Introduction 

The U.S. health care industry is facing various challenges with rising costs and limited 

capacity. Access to health care is least secure among affluent countries (Gulliford and 

Morgan 2003), and there are widespread shortages of nurses and primary-care doctors. 

According to the Association of American Medical Colleges (2010), the aging population 

of both doctors and patients as well as the Affordable Care Act will lead to a shortage of 

45,000 primary care physicians and 46,000 surgeons and medical specialists in the United 
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States by 2020. These trends suggest that hospitals and outpatient medical practices need 

to be very efficient with limited resources in providing services to patients to meet the 

increasing demand and to maximize the number of patients seen each day. It also 

behooves policy makers to provide appropriate incentives to entice hospitals and 

outpatient medical practices to serve more patients.    

Patient no-shows have been widely recognized as a major factor that interferes 

with the industry’s effort in becoming more efficient. Traditionally, patients schedule 

their appointments weeks or even months in advance to enable doctors to have full 

control of their workday schedules. When a patient makes an appointment well in 

advance under a traditional scheduling policy, there is a significant possibility that he or 

she might not make it to the scheduled appointment. These patient no-shows can result in 

doctor idle time, which is ever more undesirable in the context of the aforementioned 

shortages. Various approaches have been attempted to reduce the number of patient no-

shows: calling patients on the waiting list, providing reminder postcards, letters, or phone 

calls, and imposing financial penalties for no-shows. In response to potential patient no-

shows, many doctors who employ traditional policies practice overbooking to varying 

degrees. The extent to which a doctor tries to avoid idle time and cover expected patient 

no-shows through overbooking depends on how much she values patient goodwill, since 

overbooking increases the probability that the patient will have to wait after arriving at 

the office. 

Recently, the open-access scheduling policy has been proposed as a remedy for 

patient no-shows because it minimizes the appointment delay, or time until an 

appointment. Under an open-access policy, patients call in on the morning of their 
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preferred day and schedule an appointment for the same day. By minimizing the 

appointment lead time, an open-access policy nearly eliminates patient no-shows because 

appointment delay has a significant impact on rate of no-shows (Gallucci et al. 2005).  

We compare the performance of traditional and open-access policies in order to 

provide insights as to their effects on doctors and patients. While there are other 

advantages and disadvantages related to implementing both appointment policies, we 

focus on the financial implications for outpatient medical practices to examine the 

doctors’ incentives in the policy decision. At the same time, we compare the number of 

patients served under the two policies to investigate which policy is preferable for policy 

makers and the general public. 

The performance of the different appointment scheduling policies depends on the 

patient demand an outpatient medical practice receives. As noted earlier, hospitals and 

outpatient medical practices often face the favorable setting where demand exceeds 

supply, allowing doctors to fully book any preferred schedule. Traditional scheduling 

policies allow the doctors to experience a lesser degree of randomness in overall daily 

patient demand while open-access policies reduce the risk of idle time for doctors by 

eliminating (or at least greatly reducing) patient no-shows.  

In contrast to recent articles (Murray and Tantau 2000, Robinson and Chen 2010) 

that concluded an open-access policy is preferable because it eliminates patient no-shows 

(which result in doctors’ idle time), our model finds that the comparison is more nuanced. 

We observe that the randomness in daily patient demand plays a role in determining 

which policy outperforms the other. In particular, when an open-access policy results in 
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relatively high randomness in patient demand, the traditional policy can be more effective 

in utilizing the doctor’s time. On the other hand, it is likely that more patients are served 

under the open-access policy. Our results provide a possible explanation to the current 

situation, in which most of the doctor’s offices employ a traditional policy while the 

patients prefer the open-access policy. We also provide insights that can help policy 

makers to better incentivize the doctors to implement the socially-optimal policy. 

The remainder of the chapter is organized as follows. First, we discuss the 

relevant literature. Then we present profit-maximization models for both traditional and 

open-access scheduling policies. We perform an analytical comparison of special cases of 

the two policies. Next, we compare the two policies using numerical experiments that 

elucidate tradeoffs and we report the results. Finally, we provide concluding remarks and 

future research opportunities. All proofs are provided in the Appendix C. 

4.2. Literature Review 

Appointment scheduling in the health care industry has been studied extensively by the 

operations research literature. Bailey (1952) and Lindley (1952) are among the pioneers 

in research on outpatient appointment scheduling. Cayirli and Veral (2003) and Gupta 

and Denton (2008) provide comprehensive surveys of research on appointment 

scheduling. 

Overbooking has received much attention from researchers in revenue 

management, specifically in airline and other transportation industries (Hillier and 

Lieberman 2001, Barnhart et al. 2003, Van Ryzin and Talluri 2003). In the health care 

industry, overbooking has been viewed both as a source of patient dissatisfaction and an 
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approach to compensate for patient no-shows. Lau and Lau (2000), Denton and Gupta 

(2003), and Robinson and Chen (2003) focus on minimizing patient waiting time, 

physician idle time, and staff overtime. More recently, LaGanga and Lawrence (2007) 

examine the use of appointment overbooking to improve overall clinic performance while 

Chakraborty et al. (2010) show that a scheduling policy using overbooking provides an 

optimal stopping rule that determines how many patients are scheduled in a given day. 

Tsai and Teng (2014) develop a stochastic overbooking model that considers patients’ 

call-in sequence for outpatient clinics with multiple resources that outperforms traditional 

appointment policy. 

Lately, an open-access scheduling policy has been gaining popularity both in 

application and research. Murray and Tantau (1999) are credited as the first to present 

what is now known as advanced or open-access system. Kopach et al. (2007) develop a 

simulation model to study the effects of clinic parameters on implementation of the open-

access policy, and Green and Savin (2008) present a single-server queueing model to 

identify maximum patient panel sizes for medical practices using open-access policy. Liu 

et al. (2010) propose heuristic dynamic policies for scheduling patient appointments and 

find that the open-access policy can be a reasonable choice when the patient load is 

relatively low. On the other hand, Patrick (2012) develops a Markov decision process 

model that shows that a short booking window performs better than an open-access 

policy. Samorani and LaGanga (2015) study the problem of optimally overbooking 

appointments given no-show predictions that depend on the individual characteristics and 

on the appointment day, and suggest a heuristic that should be preferred to open-access 

under most parameter configurations.  
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The work most relevant to this essay is Robinson and Chen (2010) (denoted RC), 

who compare the performance of traditional and open-access policies. Employing a cost 

minimization model, RC conclude that the performance of an open-access policy 

dominates that of a traditional policy. Importantly, the average number of patients served 

is exogenous when comparing the two methods in RC. As in RC, we compare two 

methods of appointment scheduling: a traditional scheduling policy under which patients 

schedule well in advance, and an open-access policy under which patients schedule a 

same-day appointment at the beginning of the day. While our model and research focus is 

similar to RC, we examine the more general problem by expanding the comparison and 

increasing the number of decision variables. RC implicitly assume that it is preferable 

and beneficial for doctors to leave before the end of the day. Our formulation allows us to 

generalize implicit assumptions of RC, and capture the possible impact of having 

different average number of patients served on the overall performance of the scheduling 

policies. Having a higher average number of patients served allows more revenues and 

possibly more profits but may require additional overtime. In contrast to RC, we find that 

the relative financial performance of a traditional policy (versus that of an open-access 

policy) does not always suffer from the behavior of patient no-shows. Rather, our model 

finds that the traditional policy outperforms the open-access policy in terms of the 

doctor’s profits in many scenarios, but the open-access policy encourages the doctors to 

serve more patients on average.  

4.3. Model 

In this section, we develop stylized models for two contrasting scheduling policies and 

discuss basic assumptions. Our models are direct extensions of the models developed by 
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RC, and retain many of their assumptions. However, our approach fundamentally differs 

in that the objective of our model is to maximize profits instead of minimizing costs 

(LaGanga and Lawrence 2007, Muthuraman and Lawley 2008). Following the 

nomenclature used by RC, we refer to the two policies as “traditional” and “open-access.”  

We make the following assumptions. Each patient pays a price of 𝑟 for service 

that costs 𝑐 for the doctor. Without loss of generality, we normalize 𝑐 to zero to simplify 

the analysis. As a result, 𝑟 can be thought of as profit margin. For the remainder of this 

chapter, we use the subscript “𝑇” and “𝑂𝐴” to represent the traditional and open-access 

policy, respectively. The doctor sees 𝐷𝑇 patients in a day under the traditional policy, and 

𝐷𝑂𝐴 patients in a day under the open-access policy. A further characterization of 𝐷𝑇 and 

𝐷𝑂𝐴  is detailed in the next two subsections. Each day consists of 𝑛  regular (i.e., not 

overtime) appointment slots. Scheduling appointments beyond 𝑛 requires overbooking 

and/or overtime. Define 𝜃𝑖  as the number of slots beyond 𝑛  that the doctor stays to 

complete all service under policy 𝑖. We assume overtime costs 𝑐𝑜𝑡(𝜃𝑖) to be convex in 𝜃𝑖 

to capture the increasing marginal cost of overtime (LaGanga and Lawrence 2012, 

Truong 2015). Consistent with approaches that have been taken by many other 

researchers (e.g., Ho and Lau 1992, Cayirli et al. 2006, Robinson and Chen 2010), we 

assume that service times are constant, patients arrive on-time for their appointments, and 

there are no emergency patients that the doctor needs to accommodate. Consequently, 

each appointment slot is equal in length, which is equal to the service time. These 

assumptions allow us to focus and concentrate on the effect of the no-show rate on the 

average number of patients served and profit.  
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4.3.1. Traditional Scheduling Policy 

Under the traditional policy, patients make an appointment well in advance of their 

preferred time. Given that their appointment is well in advance, there is a strong 

possibility that he or she might not make it to the scheduled appointment. We assume an 

exogenous probability 𝑝 ∈ [0,1]  that each patient will not show up. The number of 

patients the doctor actually sees in a day 𝐷𝑇 is 𝑄 − 𝑋, where 𝑄 is (the decision for) the 

number of appointments she schedules in a day and 𝑋 is the (random) number of patient 

no-shows. There are 𝑛  available regular-time appointment slots and the doctor can 

schedule more than 𝑛 appointments using overbooking and/or overtime. We assume that 

there is sufficient demand such that all 𝑄 appointments can be booked. The number of 

patient no-shows 𝑋  is binomially distributed with population of 𝑄  and probability 𝑝 . 

Therefore, the expected realized daily demand 𝐸[𝑄 − 𝑋] = 𝜇𝑇 is 𝑄(1 − 𝑝). 

If a patient fails to show up, the doctor—if she does not overbook–is idle and 

incurs an opportunity cost of lost revenue. Hence, the doctor has an incentive to overbook 

in order to reduce idle time. The doctor overbooks to cover a proportion 𝛾 ∈ [0,1] of the 

expected no-shows 𝑄𝑝. The amount of overbooking is determined by how much she 

values her patients’ time relative to her idle time. If she values her patients’ time 

significantly more than her own (i.e., she is very patient-friendly), she would never 

overbook any patients. A doctor who chooses to overbook no one is characterized by 

𝛾 = 0, although this patient-friendly doctor could still choose to schedule 𝑄 > 𝑛 through 

overtime. Alternatively, if she wants to reduce her expected idle time (i.e., she is less 

patient-friendly), she can overbook to cover some or all of her expected no-shows. Thus, 

𝛾 represents the “patient friendliness” of the doctor with zero being the most patient-
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friendly (with no overbooking) and one being the least patient-friendly (with overbooking 

that covers every no-show). Under this definition, the number of overbooked patients is 

𝑚 = 𝑄𝑝𝛾  and the number of appointment slots the doctor needs to stay to complete 

service is 𝜃𝑇 = [𝑄 − 𝑛 − min{𝑋, 𝑚}]+. Note that the overbooking process is imperfect—

while the doctor knows the expected number of patient no-shows, she cannot know which 

patients will not show. As a result, the doctor may still experience idle time despite 

overbooking if a patient scheduled in an earlier slot does not show up. We refer to this 

phenomenon as “idleness mismatch”. Our equation for 𝜃𝑇  assumes that there is no 

idleness mismatch—that is, the doctor’s idle time will not occur so long as overbookings 

exist. For example, if three slots are overbooked, idleness will not occur until there are 

four no-shows. For low ranges of 𝛾, this is a reasonable assumption because in that case 

idleness mismatches occur with low probability—the number of overbooked patients 𝑚 

is small and it is not very difficult for the doctor to ensure the availability of overbooked 

patients at the precise time of the patient no-shows by scheduling the (few) overbooked 

appointments towards the beginning of the day. For higher values of 𝛾, our model can 

overstate profits as it fails to account for idleness that might arise in an early period 

before an overbooked patient arrives in a later period. Given this limitation of our model 

(and because we believe that in general doctors are not callously unfriendly), we only 

consider low values of 𝛾 ≤ 0.3 in our analysis and experiments. The doctor incurs a cost 

of lost goodwill 𝑐𝑔𝑤(𝑔) for patients who are overbooked or booked in the overtime slots, 

𝑔 = 𝑄 − 𝑛, and we assume a convex cost function to reflect an increasing marginal cost. 

An increasing marginal cost reflects a dynamic where a small number of overbooked 

patients are easily absorbed by the idle slots resulting from no-shows, while large 
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overbookings can result in significant queueing effects as appointments stack up. We 

treat 𝛾  as an exogenous descriptor of the doctor but in a later section explore the 

sensitivity of our model’s results to various values of 𝛾. 

Before overbooking, we assume that a doctor single-books the first 𝑛 patients to 

the 𝑛  appointment slots. As shown in RC, the optimal traditional policy contains no 

“holes” in the schedule; i.e., if it is optimal to schedule a patient for a given time slot, 

then it will be optimal to schedule patients for every earlier time slot. Our objective is to 

maximize the expected profit for doctors. The expected profit for a doctor under the 

traditional policy is 

 Π𝑇(𝑄) = 𝐸[𝑟𝐷𝑇(𝑄) − 𝑐𝑜𝑡(𝜃𝑇) − 𝑐𝑔𝑤(𝑔)]. (4.1) 

In order to facilitate comparisons between traditional and open-access policies, 

for the remainder of this chapter, we assume 𝑐𝑜𝑡(𝜃𝑖) and 𝑐𝑔𝑤(𝑔) to be quadratic functions 

such that 𝑐𝑜𝑡(𝜃𝑖) = 𝑘𝑜𝑡𝜃𝑖
2 and 𝑐𝑔𝑤(𝑔) = 𝑘𝑔𝑤𝑔2, where 𝑘𝑜𝑡 and 𝑘𝑔𝑤 are an overtime cost 

parameter and a cost parameter for loss of goodwill, respectively. For a patient-friendly 

doctor with 𝛾 = 0 , who does not overbook but still may choose to work overtime, 

Proposition 4.1 presents the optimal number of appointments she schedules under a 

traditional scheduling policy. 

PROPOSITION 4.1. Under a traditional scheduling policy and when 𝛾 = 0, the optimal 

number of appointments the doctor schedules in a day is 𝑛 +
𝑟(1−𝑝)

2(𝑘𝑜𝑡+𝑘𝑔𝑤)
. 

As expected, the optimal number of appointments increases with revenue per 

patient and number of regular-time appointment slots, while it decreases with the cost of 
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overtime and loss of goodwill. The second term 
𝑟(1−𝑝)

2(𝑘𝑜𝑡+𝑘𝑔𝑤)
 is the amount of overtime the 

doctor works to maximize her profit. The increasing marginal costs of overtime and loss 

of goodwill make any additional overtime too costly for the doctor. For 𝛾 > 0, this 

problem has no closed-form solutions for optimality conditions, but can be studied 

numerically, and we do so in Section 4.5 where we compare the performance of 

traditional and open-access policies.  

4.3.2. Open-Access Scheduling Policy 

Under the open-access policy, patients call in on the morning of their preferred day and 

schedule an appointment for the same day. Therefore, the doctor does not know the exact 

number of appointments she will have on a given day. We model this demand as 𝐷𝑂𝐴, a 

random variable with distribution 𝜙(∙) . On the other hand, the doctor still asserts 

influence on patient demand by deciding the panel size, which is a number of unique 

patients for which a doctor is responsible, and the panel size essentially determines the 

average daily demand 𝜇𝑂𝐴. That is, 𝐷𝑂𝐴 is a function of 𝜇𝑂𝐴, which is a decision variable 

for the doctor. As in RC, because patients only make an appointment for the same day, 

we assume the absence of “no-shows” under open-access policy. This assumption 

highlights an additional benefit of the open-access policy: it is possible for the doctor to 

gain additional goodwill from her patients because the open-access policy minimizes the 

appointment delay. Our model can easily account for this extra benefit by using 𝑟′ ≥ 𝑟 

for the margin per patient under the open-access policy.  

In contrast to RC, we implicitly assume a negative impact from idleness in the 

open-access scheduling policy. In particular, RC minimize cost and assume that doctors 
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go home early if demand is low (with no cost penalty). In contrast, in our profit 

maximization model the doctor incurs an opportunity cost of lost revenue per 

appointment slot if the demand on a given day does not reach 𝑛, and incurs an overtime 

cost which is a quadratic function if the demand exceeds 𝑛 . Since the daily patient 

demand is random, the optimal average daily demand maximizes the doctor’s expected 

profit: 

 max
𝜇𝑂𝐴

Π𝑂𝐴 = 𝐸[𝑟𝐷𝑂𝐴(𝜇𝑂𝐴) − 𝑐𝑜𝑡(𝜃𝑂𝐴)] = 𝑟𝜇𝑂𝐴 − 𝑘𝑜𝑡 ∫ (𝑦 − 𝑛)2𝜙(𝑦)𝑑𝑦

∞

𝑛

 (4.2) 

As in RC, we assume that the number of patients 𝐷𝑂𝐴 requesting appointments 

under an open-access policy follows the binomial distribution, which converges to a 

Poisson distribution for arrivals. Consequently, the doctor’s expected overtime cost is 

expressed as 

 
𝐸[𝑘𝑜𝑡[(𝐷𝑂𝐴 − 𝑛)+]2] = 𝑘𝑜𝑡 ∑ (𝑠 − 𝑛)2𝑝(𝑠|𝜇𝑂𝐴)

∞

𝑠=𝑛+1

= 𝑘𝑜𝑡[𝜇𝑂𝐴
2 [1 − 𝑃(𝑛 − 2|𝜇𝑂𝐴)] + 𝜇𝑂𝐴[1 − 𝑃(𝑛 − 1|𝜇𝑂𝐴)]

− 2𝑛𝜇𝑂𝐴[1 − 𝑃(𝑛 − 1|𝜇𝑂𝐴)] + 𝑛2[1 − 𝑃(𝑛|𝜇𝑂𝐴)]], 

 

 

(4.3) 

where 𝑝(𝑠|𝜇𝑂𝐴)  and 𝑃(𝑠|𝜇𝑂𝐴)  are the probability mass and cumulative distribution 

functions of the Poisson distribution with mean 𝜇𝑂𝐴, respectively.  

The expected profit function for the open-access policy with Poisson Arrivals is 

 𝐸[Π𝑂𝐴] = 𝑟𝜇𝑂𝐴 − 𝐸[𝑘𝑜𝑡[(𝐷𝑂𝐴 − 𝑛)+]2]. (4.4) 
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4.3.3. Comparison of the Two Policies: Profitability and Number of Patients Served 

When comparing the two policies, it is important to consider the optimal average number 

of patients served under each appointment policy. Figure 4.1 illustrates the hazard of 

comparing the two policies without considering how many patients were served. In this 

example, the optimal number of patients served is greater under the open-access policy 

than the traditional policy. When comparing the maximum profits of the two policies that 

occur at their respective optimal number of patients served, in this example we can see 

that the traditional policy outperforms the open-access policy. However, we see that for 

any patient volume greater than 𝜇𝐸𝑄, the open-access policy results in higher profit than 

the traditional policy. We must compare the two policies at their optimal patient volumes 

to avoid a faulty comparison. 

The optimal decisions of the doctor for both traditional and open-access policies 

are difficult to characterize analytically. In the next section, we gain insights into the 

doctor’s decision by analyzing and comparing the two policies for a special case of a very 

friendly doctor (with 𝛾 = 0) and uniform (rather than Poisson) patient demand for the 

open-access policy. Although the uniform distribution is not an accurate representation of 

patient demand, it allows us to learn structurally about how the demand variability affects 

the desirability of the two policies both in the number of patients served and profit. In 

Section 4.5 we perform numerical experiments for the Poisson-demand case and find in 

these experiments that the structural insights from the uniform case are consistent with 

what we observe in the Poisson case. 
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Figure 4.1. Example of when the Number of Patients Served is Greater under a 

Traditional Policy 

4.4. A Patient-Friendly Doctor (𝜸 = 𝟎) and Uniform Demand under the Open-

Access Policy 

Assume that 𝛾 = 0  and that the daily patient demand under open-access scheduling 

policy is uniformly distributed between 𝜇𝑂𝐴 − 𝑙 and 𝜇𝑂𝐴 + 𝑙. The parameter 𝑙 acts as a 

proxy for variability—the larger 𝑙, the more variation. 

PROPOSITION 4.2. Under uniform demand, the optimal average daily demand (which is 

directly related to the panel size) under open-access scheduling policy is:  

𝑛 +
𝑟

2𝑘𝑜𝑡
  for 𝑛 ≤ 𝜇𝑂𝐴 − 𝑙, and 

𝑛 − 𝑙 + √
2𝑙𝑟

𝑘𝑜𝑡
  for 𝜇𝑂𝐴 − 𝑙 ≤ 𝑛 ≤ 𝜇𝑂𝐴 + 𝑙.  

Proposition 4.2 shows that the optimal average number of patients the doctor sees 

in a day under open access decreases with variability of the demand and the overtime cost 

parameter. Note that Proposition 4.2 does not include the case where 𝜇𝑂𝐴 + 𝑙 < 𝑛 

because it is never optimal for 𝜇𝑂𝐴 to be less than 𝑛 − 𝑙.  
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We now compare the two scheduling policies on their performances at their 

optimal patient volumes when the daily patient demand under open-access scheduling 

policy is uniformly distributed. For accurate comparison, we compare them at their 

optimal number of patients served (for maximum profits). For simplicity of exposition, 

define: 

 
𝜉 ≡  𝑛𝑝 +

𝑟

𝑘𝑜𝑡
−

𝑟(1−𝑝)2

2(𝑘𝑜𝑡+𝑘𝑔𝑤)
+ √

𝑟[2𝑘𝑜𝑡(𝑘𝑜𝑡+𝑘𝑔𝑤)𝑛𝑝+𝑟(𝑘𝑔𝑤+2𝑘𝑜𝑡𝑝−𝑘𝑜𝑡𝑝2)]

𝑘𝑜𝑡
2 (𝑘𝑜𝑡+𝑘𝑔𝑤)

  
(4.5) 

PROPOSITION 4.3. When the daily patient demand under an open-access scheduling 

policy is uniformly distributed and 𝛾 = 0 , the optimal number of patients served is 

greater under an open-access policy than under a traditional policy when 𝑙 is less than 𝜉 . 

When demand variability is large under an open-access policy, the doctor will be 

more conservative and thus prefer lower average daily demand because of the increasing 

marginal cost of overtime. Consequently, the optimal number of patients served is greater 

under a traditional policy if the demand variability is relatively large. On the other hand, 

when demand variability is small, under an open-access policy the doctor would serve 

more patients on average. In this case it is much more likely for the realized daily 

demand to be equal or very close to the optimal average number of patients served that 

the doctor desires under open access, whereas a traditional policy continues to force her 

to be more conservative because of the uncertainty in patient no-shows. Figure 4.2 shows 

an example of the value of threshold 𝜉 for a case with 𝑙 = 6. It can be seen that the 

threshold 𝜉  is greater than 𝑙  for the majority of the values of 𝑟  and 𝑘𝑜𝑡  shown in the 

figure. Note that 𝑙 = 6 is comparable in variability to Poisson demand with 𝜇𝑂𝐴
∗ = 12 

(equal to the number of slots n). Thus, for this moderate level of demand variability, more 
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patients are served on average under the open-access policy compared to the traditional 

policy. Figure 4.2 also shows that the optimal number of patients served under the open-

access policy is likely to be higher than that of the traditional policy when revenue per 

patient is high relative to the overtime cost parameter. This is consistent with our results 

under Poisson demand, shown in Section 4.5. 

 

Figure 4.2. Number of Patients Served: Threshold 𝝃 (𝒑 = 𝟎. 𝟐𝟓, 𝒏 = 𝟏𝟐, 𝒌𝒈𝒘 = 𝟎. 𝟓, 

𝒍 = 𝟔) 

We next compare the profits under both policies to examine which policy is more 

preferable for doctors. Proposition 4.4 shows there exists a threshold degree of demand 

variability that determines which policy is more profitable. Smaller values of 𝑙 again lead 

to a preference for open-access but there remain many regions where a traditional policy 

performs better than an open-access policy. This result is in contrast to the conclusion of 

RC (that open-access dominates) and arises because we compare the two policies at their 
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respective optimal number of patients served instead of requiring the average number of 

patients served to be equal.  

Define: 

 
𝛼 ≡ 𝑛𝑝 +

4𝑟

9𝑘𝑜𝑡
−

𝑟(1−𝑝)2

4(𝑘𝑜𝑡+𝑘𝑔𝑤)
+

1

9𝑘𝑜𝑡
√

72𝑘𝑜𝑡𝑟𝑛𝑝(𝑘𝑜𝑡+𝑘𝑔𝑤)+16𝑟2𝑘𝑔𝑤−2𝑟2𝑘𝑜𝑡[1−9𝑝(2−𝑝)]

𝑘𝑜𝑡+𝑘𝑔𝑤
  

(4.6) 

 
𝛽 ≡

1

2𝑘𝑜𝑡
√

[12𝑘𝑜𝑡𝑟𝑛𝑝(𝑘𝑜𝑡+𝑘𝑔𝑤)+3𝑟2[𝑘𝑔𝑤+𝑘𝑜𝑡𝑝(2−𝑝)]

𝑘𝑜𝑡+𝑘𝑔𝑤
, and (4.7) 

 𝜏 ≡  −12𝑘𝑜𝑡𝑛𝑝(𝑘𝑜𝑡 + 𝑘𝑔𝑤) − 2𝑘𝑔𝑤𝑟 + 𝑘𝑜𝑡𝑟 − 3𝑘𝑜𝑡𝑟𝑝(2 − 𝑝). (4.8) 

PROPOSITION 4.4. When the daily patient demand under open-access scheduling policy 

is uniformly distributed with 𝑙 > 0 and 𝛾 = 0, at the respective optimal patient volumes, 

the open-access scheduling policy is more profitable than the traditional scheduling 

policy if: 

(i) 𝑙 < 𝛼 for 𝜏 ≤ 0, and 

(ii) 𝑙 < 𝛽 for 𝜏 > 0. 

Proposition 4.4 shows that the doctors prefer the traditional policy when there is 

moderate variability in patient demand under the open-access policy. Figure 4.3 shows an 

example of the relative profitability of open access or traditional based on whether the 

thresholds 𝛼 and 𝛽 are greater than or less than 6 when 𝑙 = 6. (𝛼 is used when 𝜏 ≤ 0 and 

𝛽  is used when 𝜏 > 0 .) The graph of the profit threshold of the two policies has 

similarities to that of patient volume that we saw in Figure 4.2. In particular, Figure 4.3 

shows that the open-access policy is more profitable when revenue per patient is 

relatively high and overtime cost is relatively low. However, Figure 4.2 and Figure 4.3 

show that the threshold for number of patients served is generally higher than the profit 
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threshold for the same parameter values of 𝑟 and 𝑘𝑜𝑡. Thus, it is possible that, for a given 

scenario, more patients are served on average under the open-access policy while the 

traditional policy is more profitable for the doctor. 

  

Figure 4.3. Profits: Threshold 𝜶 (when 𝝉 ≤ 𝟎) or 𝜷 (when 𝝉 > 𝟎) (𝒑 = 𝟎. 𝟐𝟓, 𝒏 = 𝟏𝟐, 

𝒌𝒈𝒘 = 𝟎. 𝟓, 𝒍 = 𝟔) 

Propositions 4.3 and 4.4 assume a uniform distribution for patient demand under 

an open-access policy. We observe from numerical results in the next section that the 

insights from the propositions continue to hold when we use Poisson arrivals for the 

demand under an open-access policy. 

4.5. Numerical Comparison of Traditional and Open-Access Policies with Poisson 

Arrivals 

In this section, we use numerical experiments to compare the two appointment 

scheduling policies under Poisson demand for open access. We use a wide range of 
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parameter values for revenue and costs to account for a broad range of circumstances for 

doctors. Revenue per patient is considered relative to the cost of overtime and loss of 

goodwill. We consider values for the revenue per patient 𝑟 from 0.1 to 6 and values for 

the overtime cost parameter 𝑘𝑜𝑡  from 0.1 to 3 and we fix the loss of goodwill cost 

parameter 𝑘𝑔𝑤 at 0.5. For all experiments, we assume the patient no-show rate is 25%. A 

regular working day for doctors consists of 12 equal-length time slots and thus any 

patients seen by the doctor after slot 12 is considered as overtime. Table 4.1 presents the 

experimental design for various parameters. 

Parameter Symbol Values 

Patient no-show rate 𝑝 25% 

Number of regular slots 𝑛 12 

Revenue per patient 𝑟 0.1 – 6 

Overtime cost parameter 𝑘𝑜𝑡 0.1 – 3 

Loss of goodwill cost parameter 𝑘𝑔𝑤 0.5 

Patient friendliness 𝛾 0 – 0.3 

Table 4.1. Experimental Design 

We first compare the number of patients served at optimality for traditional and 

open-access policies for various parameter values for overtime cost and revenue per 

patient. We present results for 𝛾 = 0 and 0.3 to compare doctors with different levels of 

patient friendliness. Figure 4.4 confirms that the optimal numbers of patients served 

under the two policies are generally different and underscores the importance of 

comparing the policies at their optimal patient volumes. Also, Figure 4.4 shows that more 

patients are generally served under an open-access policy when revenue per patient is 

high relative to the cost of overtime, while more are served under a traditional policy 

when overtime is very costly. A traditional policy allows the doctor to set an upper limit 
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on the number of patients she sees on a given day (and thus caps overtime) while an 

open-access policy does not provide the doctor any control over her daily demand once 

she decides on her panel size. This control provided by the traditional policy is beneficial 

when overtime is very expensive but can limit profitability when each patient served 

represents high profit margin (revenue). Consequently, as overtime becomes more 

expensive, a traditional policy allows the doctor to serve more patients because under an 

open-access policy, the doctor needs to be more cautious in setting her average daily 

demand to prevent potential overtime. On the other hand, an unexpectedly high number 

of patients is more desirable when revenue per patient is high and the overtime cost 

parameter is low, and thus the open-access policy incentivizes the doctor to serve more 

patients. As 𝛾 increases, the risk of overtime decreases due to the doctor’s utilization of 

overbooking, which allows the doctor to serve more patients on average in same number 

of appointment slots by reducing the idle time. Higher values of 𝛾 offset (to a certain 

extent) the main benefit provided by the open-access policy—the elimination of patient 

no-shows and resulting doctor’s idle time—while enabling the doctor to still enjoy the 

ability of the traditional policy to set an upper limit on the number of patients served. 

While an open-access policy provides the doctor less control over her daily demand, 

more patients are served on average under the open-access policy than the traditional 

policy even when 𝛾 = 0.3, as shown in Figure 4.4. The greater number of patients served 

and the reduced patient wait time make the open-access policy attractive to policy makers 

and patients. 
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(a) 𝛾 = 0 

 

(b) 𝛾 = 0.3 

 

Figure 4.4. Comparison of Patients Served 

Given the optimal number of patients served for both scheduling policies, we now 

compare the profits of the two scheduling policies at their optimal patient volumes. 
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Figure 4.5 shows that the traditional policy is more profitable when revenue per patient is 

relatively low and overtime cost is relatively high, similar to the pattern we saw in Figure 

4.4 for the number of patients served. When revenue per patient is high and overtime is 

not expensive, the advantage an open-access policy provides in eliminating the doctor’s 

idle time caused by patient no-shows and allowing the doctor to see more patients during 

the normal working hours becomes magnified. At the same time, its weakness in 

controlling potential overtime is not as important as it is when overtime is more 

expensive.  

Figure 4.5 illustrates a consideration for policy makers as they strive to encourage 

doctors to employ an open-access policy and serve more patients: because the inability of 

the open-access policy to control overtime is its major drawback, the policy maker might 

consider various initiatives that lower the cost of overtime for doctors. Figure 4.6 further 

emphasizes this opportunity by highlighting the difference between Figure 4.4 and Figure 

4.5, which is observed in the boundaries—for parameters in the center of the graphs there 

are many scenarios where more patients are served under open access but traditional is 

more profitable. Figure 4.6 shows that as long as cost of overtime is moderate relative to 

revenue per patient, doctors and patients would have different preferences for 

appointment scheduling policy. As seen in panel (b), the number of scenarios with 

different preferences for doctors and patients is even greater with less patient-friendly 

doctors. 
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(a) 𝛾 = 0 

  

(b) 𝛾 = 0.3 

 
Figure 4.5. Comparison of Profits 
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(a) 𝛾 = 0 

  

(b) 𝛾 = 0.3 

 

Figure 4.6. Traditional Policy More Profitable while Open-Access Serves More 

Patients 
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(a) 𝛾 = 0 

 

(b) 𝛾 = 0.3 

 

Figure 4.7. Comparison of Profits (𝒌𝒐𝒕 = 𝟐) 

Figure 4.7 suggests another potential approach for policy makers. Doctors would 
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becomes more expensive. This suggests the importance of ensuring that doctors 

understand and account for (or even explicitly charged for) patient goodwill costs. Also, 

Figure 4.7 shows that it becomes much more difficult to incentivize doctors who are less 

patient-friendly to employ an open-access policy. Even for a relatively low value of 

𝛾 = 0.3, the traditional policy outperforms the open-access policy for most of the cases 

shown in the figure. This result signifies the challenges for the policy makers and 

potentially explains why most doctors still employ the traditional policy while the open-

access becomes more popular among the general public. In order to increase the incentive 

for doctors to choose open access, the doctors must incur higher costs from patient 

waiting—policy makers might want to consider ways to make these costs more visible or 

explicit.  

4.6. Conclusion 

We compare two appointment scheduling policies in the health care industry to gain 

insights on their overall performance and impact on the number of patients served. Under 

a traditional scheduling policy, a patient makes an appointment well in advance of his or 

her preferred time, but there is a possibility that the patient will not show up. If a patient 

does not arrive for his or her appointment, there is a possibility that the doctor remains 

idle and incurs an opportunity cost and idle cost. Alternatively, the doctor has an option 

of overbooking which, although not perfect, can reduce the adverse impact of patient no-

shows. The doctor decides how many patients to schedule in a given day. Under an open-

access policy, a patient makes an appointment in the morning of his or her preferred day, 

thereby eliminating the possibility of no-shows. On the other hand, the doctor loses some 

control over the patient demand because the policy requires the doctor to see every 
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patient on the day he or she calls in. Although the doctor is not able to decide the exact 

demand of each day, she still asserts influence on patient demand by deciding her panel 

size, which essentially determines the average daily demand. 

By analyzing the optimal average number of patients served under both 

scheduling policies, we show that the traditional policy can allow doctors to maintain a 

higher profit for more settings while the open-access policy incentivizes doctors to serve 

more patients. Our results provide insights into a current challenge of the U.S. health care 

industry: society and policy makers prefer an open-access policy, but doctors do not 

necessarily have incentive to switch from a traditional policy. The traditional policy is 

more efficient in controlling a doctor’s overtime (although it suffers from patient no-

shows) because it allows the doctor more control over daily patient demand. The open-

access policy is subject to more variability in daily patient arrivals because it guarantees 

same-day service for all the patients who call in the morning. The traditional policy 

requires patient patients who face a larger lead time to see the doctor; the open-access 

policy requires patient doctors who have less control over schedule variability. Many 

doctors view their own time as more valuable than patients’ time, especially in the 

context of a shortage of doctors, and it is also likely that the marginal cost of overtime 

increases at a fairly high rate. Because of the ability to better control the overtime and the 

value of the doctors’ time, many doctors may find the traditional policy more profitable 

than the open-access policy, capitalizing on “patient patients”. Consequently, for our 

society to achieve its optimum, policy makers should strive to provide appropriate 

incentives and inducements to doctors so that they would be willing to serve more 

patients through the open-access policy. 
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Possible extensions to our current work might explore hybrid scheduling policies 

for doctors, in which she would set aside certain appointment slots for advance booking 

while reserving the rest for same-day appointments or urgent walk-ins (Dobson et al. 

2011). It would be interesting to investigate the optimal strategies for building hybrid 

policies, and answer questions such as how many and which slots in a day to set aside for 

a particular policy. It is probable that many doctors in reality are already using some form 

of hybrid policy, and this extension would provide valuable insights in achieving both 

goals of higher profit and improved service.  
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CHAPTER 5 

CONCLUSION 

This dissertation showed that it is important for firms to take behavior, quality, and 

flexibility into consideration when making capacity planning decisions for their service 

systems. Capacity planning decisions and the firm’s utilization of flexible capacity 

present in the system have a significant impact on the quality of the work and may also 

change the service rate of the workers through speedup and slowdown. In Chapter 2, we 

demonstrated that it is possible for hospitals to decrease total costs by increasing their 

staffing because lower workload for nurses leads to better quality of care and decreases 

the costs incurred by adverse patient and nurse outcomes.  In Chapter 3, we showed that 

the optimal workload generally varies in the number of customer requests in the system 

when the behavioral impacts of the capacity planning decision are incorporated. The 

workers’ tendency to slow down when understaffed causes the firm to aggressively 

utilize expensive on-call workers, and their tendency to speed up incentivizes the firm to 

send some workers home even when it does not recoup any wages for unworked time. In 

Chapter 4, we compared two appointment scheduling policies with different levels of 

flexibility and provided a possible explanation to the current situation, in which most of 

the doctor’s offices employ a traditional policy, which generally is more profitable for the 

doctor, while the patients and society prefer the open-access policy, which is likely to 

serve more patients.  

While we studied the impacts of capacity planning decisions on workers’ 

behavior and quality of outcome separately, considering these important attributes 

concurrently and studying the correlation between the behavior, flexibility, and quality in 
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service capacity planning decisions are natural and promising directions for future 

research. 
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Appendix A Proofs for Chapter 2 

Proof of Proposition 2.1.   

𝐹1 = 𝑐𝑠𝑛 + ∑(𝛽𝑖
𝑟−𝑟𝑏)𝛾𝑖𝜆𝑐𝑖

𝑚

𝑖=1

+ 𝑐𝐴 ∫ (
𝑡

𝑟
− 𝑛) 𝜙(𝑡)𝑑𝑡

∞

𝑛𝑟

 

𝜕𝐹1

𝜕𝑛
= 𝑐𝑠 − 𝑐𝐴 [ ∫ 𝜙(𝑡)𝑑𝑡

∞

𝑛𝑟

] = 𝑐𝑠 − 𝑐𝐴[1 − Φ(nr)] = cs − 𝑐𝐴Φ̅(𝑛𝑟) 

𝜕2𝐹1

𝜕𝑛2
= 𝑐𝐴𝑟𝜙(𝑛𝑟) ≥ 0 

𝜕2𝐹1

𝜕𝑛𝜕𝑟
= 𝑐𝐴𝑛𝜙(𝑛𝑟) 

𝜕𝐹1

𝜕𝑟
= ∑(𝛽𝑖

𝑟−𝑟𝑏)𝛾𝑖𝜆𝑐𝑖 ln 𝛽𝑖

𝑚

𝑖=1

− 𝑐𝐴 [ ∫
𝑡

𝑟2
𝜙(𝑡)𝑑𝑡

∞

𝑛𝑟

] 

𝜕2𝐹1

𝜕𝑟2
= ∑(𝛽𝑖

𝑟−𝑟𝑏)𝛾𝑖𝜆𝑐𝑖(ln 𝛽𝑖)
2

𝑚

𝑖=1

+ 𝑐𝐴 [
𝑛2

𝑟
𝜙(𝑛𝑟) + ∫

2𝑡

𝑟3
𝜙(𝑡)𝑑𝑡

∞

𝑛𝑟

] ≥ 0 

𝐻 = [

𝑐𝐴𝑟𝜙(𝑛𝑟) 𝑐𝐴𝑛𝜙(𝑛𝑟)

𝑐𝐴𝑛𝜙(𝑛𝑟) ∑(𝛽𝑖
𝑟−𝑟𝑏)𝛾𝑖𝜆𝑐𝑖(ln 𝛽𝑖)

2

𝑚

𝑖=1

+ 𝑐𝐴 [
𝑛2

𝑟
𝜙(𝑛𝑟) + ∫

2𝑡

𝑟3
𝜙(𝑡)𝑑𝑡

∞

𝑛𝑟

]
] 

Since 

𝑐𝐴𝑟𝜙(𝑛𝑟) × {∑(𝛽𝑖
𝑟−𝑟𝑏)𝛾𝑖𝜆𝑐𝑖(ln 𝛽𝑖)

2

𝑚

𝑖=1

+ 𝑐𝐴 [
𝑛2

𝑟
𝜙(𝑛𝑟) + ∫

2𝑡

𝑟3
𝜙(𝑡)𝑑𝑡

∞

𝑛𝑟

]}

≥ 𝑐𝐴𝑟𝜙(𝑛𝑟) × 𝑐𝐴

𝑛2

𝑟
𝜙(𝑛𝑟) = [𝑐𝐴𝑛𝜙(𝑛𝑟)]2 

|𝐻| ≥ 0 

Therefore, function 𝐹1 is jointly convex in 𝑛 and 𝑟.      ∎ 
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Proof of Proposition 2.2.  

𝐹1 =
2𝑐𝑠𝑐𝐴𝑔̅ − 𝑐𝑠

2(𝑔̅ − 𝑔̲)

2𝑐𝐴𝑟
+ ∑(𝛽𝑖

𝑟−𝑟𝑏)𝛾𝑖𝜆𝑐𝑖

𝑚

𝑖=1

 

𝜕𝐹1

𝜕𝑟
=

−2𝑐𝑠𝑐𝐴𝑔̅ + 𝑐𝑠
2(𝑔̅ − 𝑔̲)

2𝑐𝐴𝑟2
+ ∑(𝛽𝑖

𝑟−𝑟𝑏)𝛾𝑖𝜆𝑐𝑖 ln 𝛽𝑖

𝑚

𝑖=1

= 0 

𝑟2 =
2𝑐𝑠𝑐𝐴𝑔̅ − 𝑐𝑠

2(𝑔̅ − 𝑔̲)

2𝑐𝐴 ∑ (𝛽𝑖
𝑟−𝑟𝑏)𝛾𝑖𝜆𝑐𝑖 ln 𝛽𝑖

𝑚
𝑖=1

 

Since 𝛽𝑖 ≥ 1 for all 𝑖 , 𝛽𝑖
𝑟−𝑟𝑏  would always be greater than or equal to 1 for 𝑟∗ ≥ 𝑟𝑏 .  

Therefore, 

𝑟∗2 ≤
2𝑐𝑠𝑐𝐴𝑔̅ − 𝑐𝑠

2(𝑔̅ − 𝑔̲)

2𝑐𝐴 ∑ 𝛾𝑖𝜆𝑐𝑖 ln 𝛽𝑖
𝑚
𝑖=1

 

𝑟∗ ≤ √
2𝑐𝑠𝑐𝐴𝑔̅ − 𝑐𝑠

2(𝑔̅ − 𝑔̲)

2𝑐𝐴 ∑ 𝛾𝑖𝜆𝑐𝑖 ln 𝛽𝑖
𝑚
𝑖=1

 

Also note that because agency nurses typically earn at least as much as unit nurses (i.e., 

𝑐𝐴 ≥ 𝑐𝑠), we know that 2𝑐𝑠𝑐𝐴𝑔̅ − 𝑐𝑠
2(𝑔̅ − 𝑔̲) ≥ 0. Thus, Proposition 2.2 follows. ∎ 

Proof of Proposition 2.3. Proposition 2.3 is easily verified through the first and second 

derivatives of (2.17) with respect to 𝑟. ∎ 

Proof of Proposition 2.4. Proposition 2.4 is easily verified through the first and second 

derivatives of (2.19) with respect to 𝑟. ∎ 
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Appendix B More Details and Proofs for Chapter 3 

Appendix B.1. Notations 

𝑟  Workload (ratio of requests to servers) 

𝑟̅  Maximum allowable workload 

𝛾(𝑟)  Speedup effect as a function of workload 

𝜏(𝑟)  Slowdown effect as a function of workload 

𝜇(𝑟)  Joint effects of speedup and slowdown as a function of workload 

𝜇̅𝑠𝑝  Upper bound of the service rate for speedup effect 

𝜇̅𝑠𝑙  Upper bound of the service rate for slowdown effect 

𝜃𝑠𝑝  Degree of speedup effect 

𝜃𝑠𝑙   Degree of slowdown effect 

𝑟𝑠𝑝  Level of workload where a service rate of 𝜇̅𝑠𝑝/2 is achieved 

𝑟𝑠𝑙  Level of workload where a service rate of 𝜇̅𝑠𝑙/2 is achieved 

𝛽  Weight for speedup effect 

1 − 𝛽  Weight for slowdown effect 

𝛼  One-shift discount rate 

𝑘  Number of shifts in a cycle 

𝑧𝑠  Initial number of workers assigned to work in shift 𝑠 

𝑐𝑤  Wage per worker per shift 

𝑐𝑣  Variable cost per shift for each request in service 

𝑐ℎ  Holding cost per backlogged unit per shift 

𝑏  Service capacity of the system 

𝑌  Number of service requests in the system 

𝑋  Number of requests that are placed in service (i.e., not backlogged) 

𝜓  On-call premium relative to the regular worker wage 

𝜙  Proportion of wage the firm can recoup for workers sent home 

𝐷  Number of requests that depart the system at the end of a given shift 

𝐴  Number of new arrivals of requests in a given shift 

𝜆  Expectation of 𝐴 
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Appendix B.2. Finite-Horizon Model 

Throughout Chapter 3, we consider the finite-horizon version of the model presented in 

Section 3.3 to prove various results. Thus, we formally define the finite-horizon problem 

with 𝑡 cycles remaining. (We denote the first cycle as cycle 𝑡 and last cycle as cycle 0.)  

Denote by 𝑉𝑠𝑡(𝑦) the minimum expected total discounted cost when the system 

starts with a 𝑦 requests in shift 𝑠 of cycle 𝑡. Each cycle represents a cycle with 𝑘 shifts. 

𝑉𝑠𝑡(𝑦) must satisfy the following optimality equation: 

𝑉𝑠𝑡(𝑦) = min
𝑟≥0

{𝑐𝑤𝑧𝑠 + 𝑐𝑣 min{𝑦, 𝑏} + 𝑐ℎ(𝑦 − 𝑏)+ + (1 + 𝜓)𝑐𝑤 (
min{𝑦, 𝑏}

𝑟
− 𝑧𝑠)

+

− 𝜙𝑐𝑤 (𝑧𝑠 −
min{𝑦, 𝑏}

𝑟
)

+

+ 𝛼𝐸[𝑉⊕(𝑠𝑡)(𝑦 + 𝐴𝑠 − 𝐷(𝑦, 𝑟))]}, 

⊕ (𝑠𝑡) = {
𝑠 + 1, 𝑡  if 𝑠 < 𝑘
1, 𝑡 − 1  if 𝑠 = 𝑘

 

where 𝐷(𝑦, 𝑟)~Binomial(𝑦 , 𝜇(𝑟)), and with the convention that 𝑉𝑠(−1)(𝑦) = 0 for all 𝑦.  

We also define the finite horizon version of the problem with 𝑡 cycles remaining 

for shift-by-shift staffing with no capacity constraint case presented in Subsection 3.4.3. 

Denote by 𝑉𝑠𝑡(𝑦) the minimum expected total discounted cost when the system starts 

with a 𝑦 requests in shift 𝑠 of cycle 𝑡. Each cycle has 𝑘 shifts. 𝑉𝑠𝑡(𝑦) must satisfy the 

following optimality equation: 

𝑉𝑠𝑡(𝑦) = min
𝑟≥0

{𝑐𝑤

𝑦

𝑟
+ 𝑐𝑣𝑦 + 𝛼𝐸[𝑉⊕(𝑠𝑡)(𝑦 + 𝐴𝑠 − 𝐷(𝑦, 𝑟))]}, 

⊕ (𝑠𝑡) = {
𝑠 + 1, 𝑡  if 𝑠 < 𝑘
1, 𝑡 − 1  if 𝑠 = 𝑘
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where 𝐷(𝑦, 𝑟)~Binomial(𝑦 , 𝜇(𝑟)), and with the convention that 𝑉𝑠(−1)(𝑦) = 0 for all 𝑦. 
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Appendix B.3. Proofs 

Proof of Lemma 3.1. The first derivative of 𝜇(𝑟) is 

𝜇′(𝑟) = 𝜃 [
𝜇̅𝑠𝑝𝑒𝜃(𝑟𝑠𝑝+𝑟)𝛽

(𝑒𝜃𝑟𝑠𝑝 + 𝑒𝜃𝑟)
2 −

𝜇̅𝑠𝑙𝑒
𝜃(𝑟𝑠𝑙+𝑟)(1 − 𝛽)

(𝑒𝜃𝑟𝑠𝑙 + 𝑒𝜃𝑟)2
], 

which is positive when 
(1−𝛽)

𝛽
<

(𝑒𝜃𝑟𝑠𝑙+𝑒𝜃𝑟)
2

𝜇̅𝑠𝑝

 (𝑒𝜃𝑟𝑠𝑝+𝑒𝜃𝑟)
2

𝑒𝜃(𝑟𝑠𝑙−𝑟𝑠𝑝)𝜇̅𝑠𝑙

.   ∎ 

Proof of Lemma 3.2. The first derivative of 𝜇(𝑟)  is negative when 

(1−𝛽)

𝛽
>

(𝑒𝜃𝑟𝑠𝑙+𝑒𝜃𝑟)
2

𝜇̅𝑠𝑝

 (𝑒𝜃𝑟𝑠𝑝+𝑒𝜃𝑟)
2

𝑒𝜃(𝑟𝑠𝑙−𝑟𝑠𝑝)𝜇̅𝑠𝑙

. ∎ 

Proof of Lemma 3.3. We need to show that when 𝜇(𝑟) is not monotonic, the function is 

unimodal with a single local maximum when 𝑟𝑠𝑝 < 𝑟𝑠𝑙 and unimodal with a single local 

minimum when 𝑟𝑠𝑝 > 𝑟𝑠𝑙. To show unimodality, we need to show that for some workload 

𝑟0 , 𝜇(𝑟)  is monotonically increasing (decreasing) for 𝑟 ≤ 𝑟0  and monotonically 

decreasing (increasing) for 𝑟 ≥ 𝑟0 when 𝑟𝑠𝑝 < 𝑟𝑠𝑙 (𝑟𝑠𝑝 > 𝑟𝑠𝑙). The first derivative of 𝜇(𝑟) 

is 

𝜇′(𝑟) = 𝜃 [
𝜇̅𝑠𝑝𝑒𝜃(𝑟𝑠𝑝+𝑟)𝛽

(𝑒𝜃𝑟𝑠𝑝 + 𝑒𝜃𝑟)
2 −

𝜇̅𝑠𝑙𝑒
𝜃(𝑟𝑠𝑙+𝑟)(1 − 𝛽)

(𝑒𝜃𝑟𝑠𝑙 + 𝑒𝜃𝑟)2
], 

which is positive when 𝑒𝜃(𝑟𝑠𝑙−𝑟𝑠𝑝) 𝜇̅𝑠𝑙(1−𝛽)

𝜇̅𝑠𝑝𝛽
<

(𝑒𝜃𝑟𝑠𝑙+𝑒𝜃𝑟)
2

 (𝑒𝜃𝑟𝑠𝑝+𝑒𝜃𝑟)
2  and negative when 

𝑒𝜃(𝑟𝑠𝑙−𝑟𝑠𝑝) 𝜇̅𝑠𝑙(1−𝛽)

𝜇̅𝑠𝑝𝛽
>

(𝑒𝜃𝑟𝑠𝑙+𝑒𝜃𝑟)
2

 (𝑒𝜃𝑟𝑠𝑝+𝑒𝜃𝑟)
2. The left side of the inequality is a constant while the 

right-side decreases with 𝑟 when 𝑟𝑠𝑝 < 𝑟𝑠𝑙 and increases with 𝑟 when 𝑟𝑠𝑝 > 𝑟𝑠𝑙. Therefore, 
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the function will always be decreasing or unimodal when 𝑟𝑠𝑝 < 𝑟𝑠𝑙 and will always be 

increasing or unimodal when 𝑟𝑠𝑝 > 𝑟𝑠𝑙, and the result follows.  ∎ 

Lemma B.3.1, proved in Ross (1983), enables us to conclude that the results for 

finite-horizon problem apply to the infinite-horizon version of the model as well. We use 

Lemma B.3.2 to prove Propositions 3.1 and 3.2. 

LEMMA B.3.1. (Ross 1983; Chapter 2.3, Proposition 3.1). 𝑉𝑠𝑡(𝑦) → 𝑉𝑠(𝑦) uniformly as 

𝑡 → ∞. 

Proof of Lemma B.3.1. For a proof, see Ross (1983). ∎ 

LEMMA B.3.2. 𝑉𝑠(⋅) is an increasing function. 

Proof of Lemma B.3.2. We prove by induction over 𝑡 ≥ 0 on the finite horizon version of 

the problem presented in Appendix B.2. We first note that the base case is increasing in 

the number of requests since 𝑉𝑘0(𝑦) = min𝑟∈(0,𝑟̅] {𝑐𝑤𝑧𝑠 + 𝑐𝑣 min{𝑦, 𝑏} + 𝑐ℎ(𝑦 − 𝑏)+ +

(1 + 𝜓)𝑐𝑤 (
min{𝑦,𝑏}

𝑟
− 𝑧𝑠)

+

− 𝜙𝑐𝑤 (𝑧𝑠 −
min{𝑦,𝑏}

𝑟
)

+

}  and thus 𝑟∗ = 𝑟̅ .  Because 𝑥 =

min{𝑦, 𝑏} is nondecreasing in 𝑦, 𝑉𝑘0(⋅) is an increasing function since it is a sum of 

expressions that are either nondecreasing or increasing. For the induction, assume 

𝑉⊕(𝑠𝑡)(⋅)  is an increasing function. Then 𝐸[𝑉⊕(𝑠𝑡)(⋅)]  is an increasing function, and 

𝑉𝑠𝑡(⋅) is a sum of expressions that are either nondecreasing or increasing, making it an 

increasing function as well. By using Lemma B.3.1, we conclude that 𝑉𝑠(⋅)  is an 

increasing function. ∎ 
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Proof of Proposition 3.1. When speedup dominates slowdown, or when 𝜇(𝑟) is U-shaped 

and 𝜇(𝑟̅) ≥ 𝜇(𝑟) for all 𝑟 ∈ (0, 𝑟̅], 𝐷(min{𝑦, 𝑏} , 𝑟̅) first-order stochastically dominates  

𝐷(min{𝑦, 𝑏} , 𝑟)  for 𝑟 < 𝑟̅ . Because Lemma B.3.2 states that 𝑉𝑠(⋅)  is an increasing 

function and thus future cost is increasing in the number of requests, the expected future 

costs for 𝑟 = 𝑟̅ is less than that of 𝑟 < 𝑟̅. Furthermore, staffing costs for the current shift 

is lower for 𝑟 = 𝑟̅ than that of 𝑟 < 𝑟̅. Therefore, we conclude that 𝑟𝑠
∗ ≥ 𝑟̅. ∎ 

Proof of Proposition 3.2. When slowdown dominates speedup, the result automatically 

follows since 𝑟0 = 0. For inverse U-shape, we know that, by Lemma B.3.2, future cost is 

increasing in the number of requests. When 𝜇(𝑟)  is inverse U-shape as defined in 

Definition 3.3, increasing 𝑟 < 𝑟0  would decrease staffing costs while increasing the 

expected number of departures since 𝐷(min{𝑦, 𝑏} , 𝑟0)  first-order stochastically 

dominates  𝐷(min{𝑦, 𝑏} , 𝑟) for 𝑟 < 𝑟0. Thus, the expected future costs for 𝑟 = 𝑟0 is less 

than that of 𝑟 < 𝑟0, and we conclude that 𝑟𝑠
∗ ≥ 𝑟0. ∎ 

Lemmas B.3.3 and B.3.4 are supporting lemmas for the case of shift-by-shift 

staffing with no capacity constraint presented in Subsection 3.4.3. We use Lemmas B.3.1, 

B.3.3, and B.3.4 to prove Proposition 3.3. 

LEMMA B.3.3. Suppose that 𝜓 = 0, 𝜙 = 1, 𝑏 = ∞, and 𝑉⊕(𝑠𝑡)(⋅) is a linear function. 

Then 𝑟𝑠𝑡
∗  is independent of 𝑦. 

Proof of Lemma B.3.3. We proceed by considering the finite horizon version of the 

problem with 𝑡 cycles remaining presented in Appendix B.2. In cycle 𝑡, we determine 

𝑟𝑠𝑡
∗ (𝑦)  by minimizing 𝑐𝑤

𝑦

𝑟
+ 𝑐𝑣𝑦 + 𝛼𝐸[𝑉⊕(𝑠𝑡)(𝑦 + 𝐴𝑠 − 𝐷(𝑦, 𝑟))] . Because the 
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expectation operator is linear and we assumed 𝑉⊕(𝑠𝑡)(⋅)  is a linear function, this is 

equivalent to minimizing 𝑐𝑤
𝑦

𝑟
+ 𝑐𝑣𝑦 + 𝛼𝑉⊕(𝑠𝑡)(𝑦 + 𝐸[𝐴𝑠] − 𝐸[𝐷(𝑦, 𝑟)]), which by 

applying the definition of 𝐴𝑠  and 𝐷,  is equivalent to minimizing 𝑐𝑤
𝑦

𝑟
+ 𝑐𝑣𝑦 +

𝛼𝑉⊕(𝑠𝑡)(𝑦 + 𝜆𝑠 − 𝑦𝜇(𝑟)). Since 𝑉⊕(𝑠𝑡) is a linear function, there exist constant reals 𝜉𝑠𝑡 

and 𝜂𝑠𝑡 such that for all 𝑥 ≥ 0,  𝑉⊕(𝑠𝑡)(𝑥) = 𝜉𝑠𝑡𝑥 + 𝜂𝑠𝑡 . Using this fact, we can re-write  

 𝑉𝑠𝑡(𝑦) = 𝑐𝑤

𝑦

𝑟
+ 𝑐𝑣𝑦 + 𝛼[ 𝜉𝑠𝑡(𝑦 + 𝜆𝑠 − 𝑦𝜇(𝑟)) + 𝜂𝑠𝑡]

= (
𝑐𝑤

𝑟
+ 𝑐𝑣 + 𝛼𝜉𝑠𝑡(1 − 𝜇(𝑟))) 𝑦 + 𝛼(𝜉𝑠𝑡𝜆𝑠 + 𝜂𝑠𝑡) (B.3.1) 

Because 𝑟𝑠𝑡
∗ ∈ (0, 𝑟̅] minimizes the above expression, it must either be equal to 𝑟̅ or be the 

solution to the first order condition 0 = 𝑐𝑤 (−
𝑦

𝑟2) − 𝛼 𝜉𝑠𝑡𝑦 (
𝑑𝜇(𝑟)

𝑑𝑟
), or in other words, 

0 = 𝑐𝑤 + 𝛼 𝜉𝑠𝑡
𝑑𝜇(𝑟)

𝑑𝑟
𝑟2 (for the case where 𝑦 ≠ 0).  

Note that neither 𝑟̅ nor the solution(s) to 0 = 𝑐𝑤 + 𝛼 𝜉
𝑑𝜇(𝑟)

𝑑𝑟
𝑟2 depend on y. If there are 

multiple solutions to 0 = 𝑐𝑤 + 𝛼 𝜉
𝑑𝜇(𝑟)

𝑑𝑟
𝑟2 , we see from Equation (B.3.1) that 𝑟𝑠,𝑡

∗  is 

equal to the solution that yields the lowest value of 
𝑐𝑤

𝑟
+ 𝑐𝑣 + 𝛼𝜉𝑠𝑡(1 − 𝜇(𝑟)), which is 

independent of 𝑦. When 𝑦 = 0, we have 𝑉𝑠𝑡(0) = 𝛼𝑉⊕(𝑠𝑡)(𝜆𝑠), which is a constant, and 

therefore we can set the ratio 𝑟 arbitrarily to 𝑟𝑠𝑡
∗  and the result holds.  ∎ 

LEMMA B.3.4. Suppose that  𝜓 = 0, 𝜙 = 1, and 𝑏 = ∞. If 𝑉⊕(𝑠𝑡)(⋅) is a linear function, 

then so is 𝑉𝑠𝑡(⋅). 

Proof of Lemma B.3.4. By definition, we have 
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𝑉𝑠𝑡(𝑦) = min
𝑟𝑠≥0

{𝑐𝑤

𝑦

𝑟𝑠
+ 𝑐𝑣𝑦 + 𝛼𝐸[𝑉⊕(𝑠𝑡)(𝑦 + 𝐴𝑠 − 𝐷(𝑦, 𝑟𝑠))]}. 

Because the expectation operator is linear and we assumed 𝑉⊕(𝑠𝑡)(⋅) is a linear function, 

we have  

𝑉𝑠𝑡(𝑦) = min
𝑟𝑠≥0

{𝑐𝑤

𝑦

𝑟𝑠
+ 𝑐𝑣𝑦 + 𝛼𝑉⊕(𝑠𝑡)(𝑦 + 𝜆𝑠 − 𝑦𝜇(𝑟𝑠))}. 

Applying the min operator is equivalent to replacing 𝑟 by 𝑟𝑠𝑡
∗ (𝑦), which is the function 

returning the optimal value of 𝑟𝑠 for any given number of requests 𝑦. By Lemma B.3.3, 

there exists 𝑟𝑠𝑡
∗  such that 𝑟𝑠𝑡

∗ (𝑦) = 𝑟𝑠𝑡
∗ . Making this substitution, we have 

𝑉𝑠𝑡(𝑦) = 𝑐𝑤

𝑦

𝑟𝑠𝑡
∗ + 𝑐𝑣𝑦 + 𝛼𝑉⊕(𝑠𝑡)(𝑦 + 𝜆𝑠 − 𝑦𝜇(𝑟𝑠𝑡

∗ )). 

Observe that the function 𝑦 + 𝜆𝑠 − 𝑦𝜇(𝑟𝑠𝑡
∗ ) is linear in 𝑦 because 𝑟𝑠𝑡

∗  does not depend on 

𝑦. Since 𝑉⊕(𝑠𝑡)(⋅) was assumed to be linear, we conclude that 𝑉𝑠𝑡(𝑦) is a linear function 

in 𝑦.  ∎ 

Proof of Proposition 3.3. We proceed by considering the finite horizon version of the 

problem with 𝑡 cycles remaining presented in Appendix B.2. 

First, Lemma B.3.3 states that for any 𝑠 and 𝑡, if 𝑉⊕(𝑠𝑡)(⋅) is a linear function, 

then there exists an optimal workload 𝑟𝑠𝑡
∗  for shift 𝑠 in period 𝑡 that is independent of the 

number of requests in the system. With that result in hand, it is sufficient to show that 

𝑉𝑠𝑡(⋅) is a linear function for all 𝑠 = {1, … , 𝑘} and 𝑡 ≥ 0. The base case is that 𝑉𝑘0(⋅) is a 

linear function in the number of requests. This result follows because 𝑉𝑘0(𝑦) =

min𝑟𝑘≥0 {𝑐𝑤
𝑦

𝑟𝑘
+ 𝑐𝑣𝑦} and 𝑟𝑘

∗ = 𝑟̅ for all 𝑦, thereby making 𝑉𝑘0(⋅) a linear function in 𝑦.  
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For the inductive step, we suppose that it has been shown that 𝑉⊕(⋅) is a linear function 

in the number of requests and Lemma B.3.4 demonstrates the linearity of 𝑉𝑠𝑡(⋅)  by 

induction on 𝑡 ≥ 0 if 𝑉⊕(𝑠𝑡)(⋅) is a linear function. 

We conclude the proof of Proposition 3.3 by using Lemma B.3.1, which states  

𝑉𝑠𝑡(𝑦) → 𝑉𝑠(𝑦) uniformly as 𝑡 → ∞. Therefore, since 𝑉𝑠(𝑦) is a linear function in 𝑦, by 

Lemma B.3.3, there exists 𝑟𝑠
∗ such that 𝑟𝑠

∗(𝑦) = 𝑟𝑠
∗ for all 𝑦 > 0.  ∎ 

Proof of Proposition 3.4. Since 𝑉⊕(𝑠𝑡)(𝑦) is a linear function and the expectation of a 

linear function is equivalent to a linear function of expectations, 𝑣𝑠𝑡(𝑦, 𝑟) =
𝑐𝑤𝑦

𝑟
+ 𝑐𝑣𝑦 +

𝛼𝜉(𝑦 + 𝜆𝑠 − 𝑦𝜇(𝑟)) + 𝜂, for some constants 𝜉  and 𝜂 . The first order condition would 

then be 

𝑑

𝑑𝑟
𝑣𝑠𝑡(𝑦, 𝑟) = −

𝑐𝑤𝑦

𝑟2
− 𝛼𝜉𝑦

𝑑

𝑑𝑟
𝜇(𝑟) = 0. 

Since we know from Lemma 3.1 that 𝜇(𝑟) is quasiconcave with global maximum 𝑟0 , 

𝑑

𝑑𝑟
𝜇(𝑟)  is non-negative and thus 

𝑑

𝑑𝑟
𝑣𝑠𝑡(𝑦, 𝑟)  is negative for 𝑟 ≤ 𝑟0 . For 𝑟0 ≤ 𝑟 ≤ 𝑟1 , 

𝑑

𝑑𝑟
𝑣𝑠𝑡(𝑦, 𝑟) increases with 𝑟. If there exists 𝑟0 ≤ 𝑟∗ ≤ 𝑟1  that is a solution to the first 

order condition above, it would a unique local minimum since there can only be one more 

local optimum, which would be a local maximum, at the most for 𝑟 ≥ 𝑟1. If there does 

not exist a local minimum for 𝑟0 ≤ 𝑟 ≤ 𝑟1, the local optimum for 𝑟 ≥ 𝑟1 would be the 

unique local minimum. If there does not exist the solution for the first order condition, 

then we know that 𝑣𝑠𝑡(𝑦, 𝑟) is always decreasing and would be minimized at 𝑟̅.  ∎ 
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Appendix C Proofs for Chapter 4 

Proof of Proposition 4.1. We first show the profit function under traditional policy is 

concave, and use first-order condition to solve for the optimal 𝑄 . We only need to 

consider the case in which 𝑄 is no less than 𝑛 because 𝑄 < 𝑛 only represents idle time, 

and thus there is no benefit, for the doctor. 

When 𝛾 = 0,  

Π𝑇 = 𝑟𝑄(1 − 𝑝) − 𝑘𝑜𝑡[(𝑄 − 𝑛)+]2 − 𝑘𝑔𝑤[(𝑄 − 𝑛)+]2 

𝜕Π𝑇

𝜕𝑄
= 𝑟(1 − 𝑝) − 2(𝑘𝑜𝑡 + 𝑘𝑔𝑤)(𝑄 − 𝑛) 

 
𝜕2Π𝑇

𝜕𝑄2
= −2(𝑘𝑜𝑡 + 𝑘𝑔𝑤) < 0 

𝑄∗ = 𝑛 +
𝑟(1 − 𝑝)

2(𝑘𝑜𝑡 + 𝑘𝑔𝑤)
 

Π𝑇
∗ =

𝑟(1 − 𝑝)[4𝑛(𝑘𝑜𝑡 + 𝑘𝑔𝑤) + 𝑟(1 − 𝑝)]

4(𝑘𝑜𝑡 + 𝑘𝑔𝑤)
 

Thus, Proposition 4.1 follows. ■ 

Proof of Proposition 4.2. It is never optimal if 𝜇𝑂𝐴 + 𝑙 < 𝑛 because increasing 𝜇𝑂𝐴 + 𝑙 

up to 𝑛 would only increase the revenue while reducing idle time incurred. Thus, we only 

need to consider two cases: 𝜇𝑂𝐴 − 𝑙 ≤ 𝑛 ≤ 𝜇𝑂𝐴 + 𝑙 and 𝑛 ≤ 𝜇𝑂𝐴 − 𝑙 ≤ 𝜇𝑂𝐴 + 𝑙 

𝐷𝑂𝐴~𝑈𝑛𝑖𝑓[𝜇𝑂𝐴 − 𝑙, 𝜇𝑂𝐴 + 𝑙] 
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𝑓(𝑥) =
1

2𝑙
 

Case 1: 𝜇𝑂𝐴 − 𝑙 ≤ 𝑛 ≤ 𝜇𝑂𝐴 + 𝑙 

max
𝜇𝑂𝐴

Π𝑂𝐴 = 𝑟𝜇𝑂𝐴 − 𝑘𝑜𝑡 ∫ (𝑦 − 𝑛)2𝜙(𝑦)𝑑𝑦

∞

𝑛

 

Π𝑂𝐴 = 𝑟𝜇𝑂𝐴 − 𝑘𝑜𝑡 ∫ (𝑦 − 𝑛)2
1

2𝑙
𝑑𝑦

𝜇𝑂𝐴+𝑙

𝑛

= 𝑟𝜇𝑂𝐴 −
𝑘𝑜𝑡

6𝑙
(𝜇𝑂𝐴 + 𝑙 − 𝑛)3 

𝜕Π𝑂𝐴

𝜕𝜇𝑂𝐴
= 𝑟 −

𝑘𝑜𝑡

2𝑙
(𝜇𝑂𝐴 + 𝑙 − 𝑛)2 

𝜕2Π𝑂𝐴

𝜕𝜇𝑂𝐴
2 = −

𝑘𝑜𝑡

𝑙
(𝜇𝑂𝐴 + 𝑙 − 𝑛) ≤ 0 

Since Π𝑂𝐴  is concave, the first-order condition is necessary and sufficient to find the 

optimal 𝜇𝑂𝐴. The first derivative is zero at two different points, 𝑛 − 𝑙 ± √
2𝑙𝑟

𝑘𝑜𝑡
. However, 

𝑛 − 𝑙 − √
2𝑙𝑟

𝑘𝑜𝑡
 is not a feasible value for 𝜇𝑂𝐴 for this case because 𝑛 ≤ 𝜇𝑂𝐴 + 𝑙. Therefore, 

the optimal average number of patients served 𝜇𝑂𝐴
∗ = 𝑛 − 𝑙 + √

2𝑙𝑟

𝑘𝑜𝑡
.  

Π𝑂𝐴
∗ = 𝑟(𝑛 − 𝑙) +

2𝑟√2𝑙𝑟

3√𝑘𝑜𝑡

 

Case 2: 𝑛 < 𝜇𝑂𝐴 − 𝑙 ≤ 𝜇𝑂𝐴 + 𝑙 

max
𝜇𝑂𝐴

Π𝑂𝐴 = 𝑟𝜇𝑂𝐴 − 𝑘𝑜𝑡 ∫ (𝑦 − 𝑛)2𝜙(𝑦)𝑑𝑦

∞

𝑛

 



www.manaraa.com

 

124 

 

Π𝑂𝐴 = 𝑟𝜇𝑂𝐴 − 𝑘𝑜𝑡 ∫ (𝑦 − 𝑛)2
1

2𝑙
𝑑𝑦

𝜇𝑂𝐴+𝑙

𝜇𝑂𝐴−𝑙

= 𝑟𝜇𝑂𝐴 −
𝑘𝑜𝑡

3
[𝑙2 + 3(𝑛 − 𝜇𝑂𝐴)2] 

𝜕Π𝑂𝐴

𝜕𝜇𝑂𝐴
= 𝑟 + 2𝑘𝑜𝑡(𝑛 − 𝜇𝑂𝐴) 

𝜕2Π𝑂𝐴

𝜕𝜇𝑂𝐴
2 = −2𝑘𝑜𝑡 ≤ 0 

𝜇𝑂𝐴
∗ = 𝑛 +

𝑟

2𝑘𝑜𝑡
 

Π𝑂𝐴
∗ = 𝑟𝑛 +

𝑟2

4𝑘𝑜𝑡
−

𝑘𝑜𝑡𝑙2

3
 

Note that when the optimal average number of patients served is substituted to both cases, 

case 1 represents when 𝑙 ≥
𝑟

2𝑘𝑜𝑡
 and case 2 represents when 𝑙 <

𝑟

2𝑘𝑜𝑡
, thereby accounting 

for the entire range of 𝑙 values.  ■ 

Proof of Proposition 4.3. For consistent comparison of the two policies, we compare the 

average number of patients doctor sees in a day, 𝑄∗(1 − 𝑝) and 𝜇𝑂𝐴
∗ . 

Case 1: 𝜇𝑂𝐴 − 𝑙 ≤ 𝑛 ≤ 𝜇𝑂𝐴 + 𝑙 

Δ𝜇 = 𝑄∗(1 − 𝑝) − 𝜇𝑂𝐴
∗ = 𝑙 − 𝑛𝑝 +

𝑟(1 − 𝑝)2

2(𝑘𝑜𝑡 + 𝑘𝑔𝑤)
− √

2𝑙𝑟

𝑘𝑜𝑡
 

𝜕Δ𝜇

𝜕𝑙
= 1 − √

𝑟

2𝑘𝑜𝑡𝑙
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𝜕2Δ𝜇

𝜕𝑙2
=

1

2𝑙
√

𝑟

2𝑘𝑜𝑡𝑙
≥ 0 

Δ𝜇 is zero, and thus the average number of patients served under the two policies are 

equal, when 𝑙 = 𝑛𝑝 +
𝑟

𝑘𝑜𝑡
−

𝑟(1−𝑝)2

2(𝑘𝑜𝑡+𝑘𝑔𝑤)
+ √

𝑟[2𝑘𝑜𝑡(𝑘𝑜𝑡+𝑘𝑔𝑤)𝑛𝑝+𝑟(𝑘𝑔𝑤+2𝑘𝑜𝑡𝑝−𝑘𝑜𝑡𝑝2)]

𝑘𝑜𝑡
2 (𝑘𝑜𝑡+𝑘𝑔𝑤)

.  

When 𝑙 =
𝑟

2𝑘𝑜𝑡
, 

Δ𝜇 = −2𝑛𝑝 −
𝑟[𝑘𝑔𝑤 + 𝑘𝑜𝑡(2 − 𝑝)𝑝]

𝑘𝑜𝑡(𝑘𝑜𝑡 + 𝑘𝑔𝑤)
≤ 0 

Therefore, 𝑄∗(1 − 𝑝) > 𝜇𝑂𝐴
∗  for 

𝑙 > 𝑛𝑝 +
𝑟

𝑘𝑜𝑡
−

𝑟(1−𝑝)2

2(𝑘𝑜𝑡+𝑘𝑔𝑤)
+ √

𝑟[2𝑘𝑜𝑡(𝑘𝑜𝑡+𝑘𝑔𝑤)𝑛𝑝+𝑟(𝑘𝑔𝑤+2𝑘𝑜𝑡𝑝−𝑘𝑜𝑡𝑝2)]

𝑘𝑜𝑡
2 (𝑘𝑜𝑡+𝑘𝑔𝑤)

. 

 

Case 2: 𝑛 < 𝜇𝑂𝐴 − 𝑙 ≤ 𝜇𝑂𝐴 + 𝑙 

𝜇𝑂𝐴
∗ = 𝑛 +

𝑟

2𝑘𝑜𝑡
 

Δ𝜇 = 𝑄∗(1 − 𝑝) − 𝜇𝑂𝐴
∗ = −𝑛𝑝 −

𝑟[𝑘𝑔𝑤 + 𝑘𝑜𝑡𝑝(2 − 𝑝)]

2𝑘𝑜𝑡(𝑘𝑜𝑡 + 𝑘𝑔𝑤)
≤ 0 

Therefore, in case 2, the optimal average number of patients served under open-access 

policy is always greater than under traditional policy.  ■ 
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Proof of Proposition 4.4. For consistent comparison of profits for the two policies, we 

compare the maximum profits under the two policies. 

Case 1: 𝜇𝑂𝐴 − 𝑙 ≤ 𝑛 ≤ 𝜇𝑂𝐴 + 𝑙 

Π𝑇
∗ =

𝑟(1 − 𝑝)[4𝑛(𝑘𝑜𝑡 + 𝑘𝑔𝑤) + 𝑟(1 − 𝑝)]

4(𝑘𝑜𝑡 + 𝑘𝑔𝑤)
 

Π𝑂𝐴
∗ = 𝑟(𝑛 − 𝑙) +

2𝑟√2𝑙𝑟

3√𝑘𝑜𝑡

 

ΔΠ = Π𝑇
∗ − Π𝑂𝐴

∗ = 𝑟𝑙 − 𝑟𝑛𝑝 +
𝑟2(1 − 𝑝)2

4(𝑘𝑜𝑡 + 𝑘𝑔𝑤)
−

2𝑟√2𝑙𝑟

3√𝑘𝑜𝑡

 

∂ΔΠ

∂𝑙
= 𝑟 −

𝑟2

3
√

2

𝑘𝑜𝑡𝑙𝑟
 

𝜕2ΔΠ

𝜕𝑙2
=

𝑟2

3𝑙√2𝑘𝑜𝑡𝑙𝑟
≥ 0 

ΔΠ = 0 ⇔ 𝑙∗ = 𝑛𝑝 +
4𝑟

9𝑘𝑜𝑡
−

𝑟(1 − 𝑝)2

4(𝑘𝑜𝑡 + 𝑘𝑔𝑤)

+
1

9𝑘𝑜𝑡

√
72𝑘𝑜𝑡𝑟𝑛𝑝(𝑘𝑜𝑡 + 𝑘𝑔𝑤) + 16𝑟2𝑘𝑔𝑤 − 2𝑟2𝑘𝑜𝑡[1 − 9𝑝(2 − 𝑝)]

𝑘𝑜𝑡 + 𝑘𝑔𝑤
 

Case 2: 𝑛 < 𝜇𝑂𝐴 − 𝑙 ≤ 𝜇𝑂𝐴 + 𝑙 

Π𝑂𝐴
∗ = 𝑟𝑛 +

𝑟2

4𝑘𝑜𝑡
−

𝑘𝑜𝑡𝑙2

3
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ΔΠ = Π𝑇
∗ − Π𝑂𝐴

∗ =
𝑘𝑜𝑡𝑙2

3
− 𝑟𝑛𝑝 −

𝑟2[𝑘𝑔𝑤 + 𝑘𝑜𝑡𝑝(2 − 𝑝)]

4𝑘𝑜𝑡(𝑘𝑜𝑡 + 𝑘𝑔𝑤)
 

∂ΔΠ

∂𝑙
=

2𝑘𝑜𝑡𝑙

3
 

𝜕2ΔΠ

𝜕𝑙2
=

2𝑘𝑜𝑡

3
≥ 0 

ΔΠ = 0 ⇔ 𝑙∗ =
1

2𝑘𝑜𝑡

√
[12𝑘𝑜𝑡𝑟𝑛𝑝(𝑘𝑜𝑡 + 𝑘𝑔𝑤) + 3𝑟2[𝑘𝑔𝑤 + 𝑘𝑜𝑡𝑝(2 − 𝑝)]

𝑘𝑜𝑡 + 𝑘𝑔𝑤
 

Since 
∂ΔΠ

∂𝑙
(𝑙 =

𝑟

2𝑘𝑜𝑡
) =

𝑟

3
≥ 0, if ΔΠ at 𝑙 =

𝑟

2𝑘𝑜𝑡
 is negative, the threshold value for 

𝑙 where profits for both policies would be equal would fall under case 1. If it is positive, 

the threshold would be under case 2. 

ΔΠ (𝑙 =
𝑟

2𝑘𝑜𝑡
) =

𝑟2[−2𝑘𝑔𝑤 + 𝑘𝑜𝑡 − 3𝑝(2 − 𝑝)]

12𝑘𝑜𝑡(𝑘𝑜𝑡 + 𝑘𝑔𝑤)
− 𝑟𝑛𝑝

=
𝑟[−12𝑘𝑜𝑡𝑛𝑝(𝑘𝑜𝑡 + 𝑘𝑔𝑤) − 2𝑘𝑔𝑤𝑟 + 𝑘𝑜𝑡𝑟 − 3𝑘𝑜𝑡𝑟𝑝(2 − 𝑝)]

12𝑘𝑜𝑡(𝑘𝑜𝑡 + 𝑘𝑔𝑤)
 

The sign of the above expression is determined by −12𝑘𝑜𝑡𝑛𝑝(𝑘𝑜𝑡 + 𝑘𝑔𝑤) − 2𝑘𝑔𝑤𝑟 +

𝑘𝑜𝑡𝑟 − 3𝑘𝑜𝑡𝑟𝑝(2 − 𝑝). Thus, Proposition 4.4 follows. ■ 
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